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R0	 0.86	 m
a	 0.67	 m
I	 1.5	 MA
B0	 0.55	 T
NBI	 7.4	 MW
RF	 6.0	 MW
t	 1.8	 sec

What causes ELMs? 
•	  Steep pressure gradients and current densities 

in the pedestal region. 

•	 NSTX was capable of 7.4 MW of NBI power. 
•	  Pe,i , Te,i , and other parameters were calculated as 

a function of PNBI. 
•	 Increased PNBI is expected to increase core Te,i , 

Pe,i , ne,i , and edge J and ∇ P. 
•	 ELMs are more prone to be destabilized in plas-

mas with more PNBI.
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1.	L-mode has low energy confinement.
2.	More input power causes a transition to H-mode 

(high energy confinement). 
	 H-mode plasmas have larger currents and pres-

sure gradients in the edge. 
3.	Edge localized modes (ELMs) cause a transitory 

decrease in energy confinement. 1 2

1.	A photon is emitted by a laser.
2.	The photon is scattered by the electron, blueshift-

ing or redshifting it. 
	 The scattered photon is collected and analyzed
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•	 Provides information 
on electron density 
and temperature.

•	 Acquired at 60 Hz.

•	 Provides information on ion density, temperature, 
and rotation.

•	 Acquired at 100 Hz with a 10 ms integration time.

1.	A fast neutral atom 
passes by a slow ion.

2.	The slow ion captures 
the electron from the 
fast neutral atom.

3.	The captured electron 
drops down to low-
er energy levels and 
emits photons.

	 The emitted photons 
are collected and ana-
lyzed.

•	 NSTX was a spherical tokamak (ST).
•	 STs have small aspect ratios and lend themselves 

to stability.
•	 Power of the neutral beam injector (PNBI) is varied 

for this study, which is called a power scan.

Machine Parameters

•	 Detected visible light that ELM filaments emit.
•	 Easier to see ELMs in O1+ and B1+ spectral lines.

ELMs: 
•	 Eject plasma, impurities, and heat when the stabili-

ty boundary is reached. 
•	 Occur frequently in H-mode.
•	 Are accurately described by MHD as peeling-bal-

looning modes (above images).
•	 Cause filaments.

•	  ne,ped is comparable for all three discharges.
•	  Te,ped for 5-MW and 6-MW discharges are compa-

rable and higher than the 4-MW discharge. 
•	  Ti,e increases with PNBI.

•	 Used to reconstruct MHD equilibria.
•	 ELMs were visible in the data.
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•	 The 5-MW and 6-MW discharges have similar α 
and J|| in the pedestal.
•	 This similarity indicates that they both reach the 

stability boundary.
•	 The 4-MW discharge has lower α and J|| which in-

dicates that 
•	 transport may be removing energy faster than 

the NBI can provide.
•	 it does not reach the stability boundary.

•	 Greater pressure gradients lead to larger bootstrap 
currents.
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•	 Two codes used for stability analysis: 
•	 ELITE (ideal MHD)
•	 M3D-C1 (two-fluid resistive MHD)

•	 Ideal MHD calculations using ELITE indicate that 
all ideal modes are stable.

•	 Instability growth rates are much higher in M3D-C1 
than ELITE. 

•	 ELMs are dominated by resistive low n modes 

6 MW 5 MW 4 MW

•	  Ptot , Pfast , and Pion  increase with PNBI.
•	  Pe,ped for 5-MW and 6-MW discharges are compa-

rable and higher than the 4-MW discharge.
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