Developing a generative ML model for LAPD trend inference and profile prediction
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Learning a probability distribution over machine state and diagnostics for diagnostics reconstruction and trend inference
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camera data (1,300 frames at 35,000 fps) spread over hundreds

of different data runs

o 1 2 3 0 1 20 30 0 10 20 3 Long-timescale trends seen in data: EBMs could compensate
. Flattop discharge current and interferometer measurements
g Single sample
o —— Average . — 0.80
© : 2 - Changes in discharge current likely Summary
5 < o in-part caused by probe positions - Data _pipelir_le was c_:onstru.cted for machine state information (MSI)
— — — — 5 , 0.70 . Current assumption: plasmas do not and fixed diagnostics (an interferometer and diodes)
Number of sampling steps 0 . g | change significantly shot-to-shot - Energy-based models (EBMs) learn a probability distribution by
o . _ _ _ = a . : assigning an energy value to each input configuration
- The energy function is sampled iteratively from uniform noise 2 ;r 0.60 May be able to relax this » e
_ _ 2 | assumption using ML - EBMs can be conditionally sampled to fill in missing signals
* Above: samples of discharge current constrained to 7.2 kA by 2600 . . . — . 1 0.55 . .
modifying the energy function at 1, 10, and 1000 steps 0.0 0.5 1.0 1.5 2.0 2.5 3.0 - Data have been collected for EBM-based profile reconstruction
’ ’ Days

Work supported by the US DOE and NSF, and performed at the Basic Plasma Science Facility (BaPSF), UCLA.



