Generating synthetic LAPD discharges using
energy-based models (EBMs)
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The Large Plasma Device (LAPD) is flexible and accessible
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— Te ~ 5'10 eV, Ne ~ 1013

 Machine state information (MSI)

* Discharge | & V, B profile,
» Wide variety of basic & space plasma gas pressure, RGA

experiments | |
* Diagnhostics

 Up to ~31m shots per year: data rich . | |
* |Interferometer, visible light diodes

: : ] _ e Fast framing camera
 This work: collecting MSI & diagnostics

* Probes (high spatial resolution)
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A high-variance approach to learning from plasmas can be useful

Scaling laws Learned EBM

E I =3 E
Reductionistic X Holistic
Low variance T T High variance

Theory work Discrepancy
modeling

e All effects accounted for in prediction
* Discharges may contain currently unexploitable information
 Model has few preconceived notions (low bias)

e Can introduce bias (theoretical models) later
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Energy-based models (EBMs) have useful qualities for science tasks

p(x) ~ e PEW Data = @ ->E

dim(x) = 1715
= total # of samples E T T V T
 (Generative: learns a probability distribution l A

* Predicts everything from everything else NEXA o2

» Conditional sampling is built-in S|gna| value

* Energies are composable — can add models together

 Doesn’t suffer from mode collapse / spurious modes

Review: Deep Generative Modelling — Bond-Taylor et al. (2021) arXiv:2103.04922
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Synthetic discharges can be sampled from a learned probability distribution

X ~ p(x) dim(x) = 1715

Langevin dynamics: J

i=— VEX) ++/TN0,1) V
t t

potential gaussian
gradient process

L
Du & Mordatch (2019) arXiv:1903.08689v6 S I g n a I va I u e

Du et al. (2020) arXiv:2012.01316v4
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Synthetic discharges can be sampled from a learned probability distribution

Real discharges

Discharge | (Amps) vs ms
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Unconditionally sampled discharges

Discharge | (Amps) vs ms
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Diode 0 (Volts) vs ms
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Conditional sampling can be performed to fill iIn missing signals
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X: discharge parameters
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y: missing diode signal

Distribution of sampled diode signals at 13.92 ms
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We get conditional sampling and a measure of uncertainty for free
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Future work: accelerate science campaigns + find good operating regimes

 Add fast framing camera data, probe signals

Fast camera frames

* Infer probe signals from other diagnostics  120-

100 -

* |Infer 2d profiles in a few discharges

0.5

80 -
0.4

e New LAPD source characterization

60 -
.3

 Develop model architectures
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- 0.2

* |Interrogate model 20 -

-l

* Long term: use model to uncover 0 20 40 60 80 100 120
correlations, form basis for theoretical work
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Summary: EBMs can be used to sample discharges

e Data pipeline was constructed for machine state information and diagnostics
* Energy-based models (EBMs) learn a probability distribution

e assigns an energy value to each input configuration
 EBMs can be unconditionally sampled to generate synthetic discharges

« EBMs can be conditionally sampled to fill in missing signals

phil@physics.ucla.edu

(thanks for not running off to lunch)
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