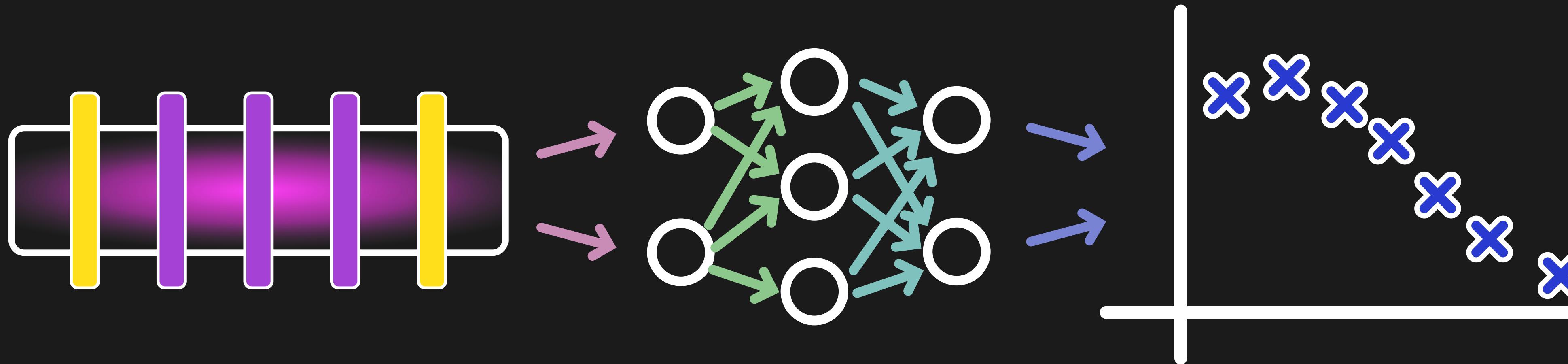


Generating synthetic LAPD discharges using energy-based models (EBMs)



Phil Travis*, Steve Vincena

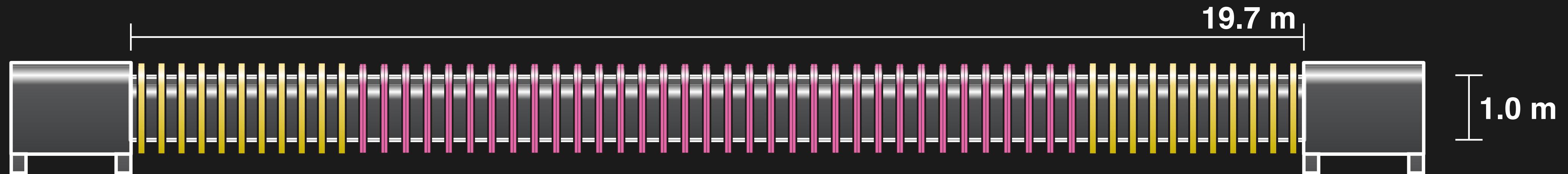
*phil@physics.ucla.edu

UCLA Basic Plasma Science Facility

(Thanks: Gurleen Bal, Tom Look, Yhoshua Wug, **Troy Carter**)

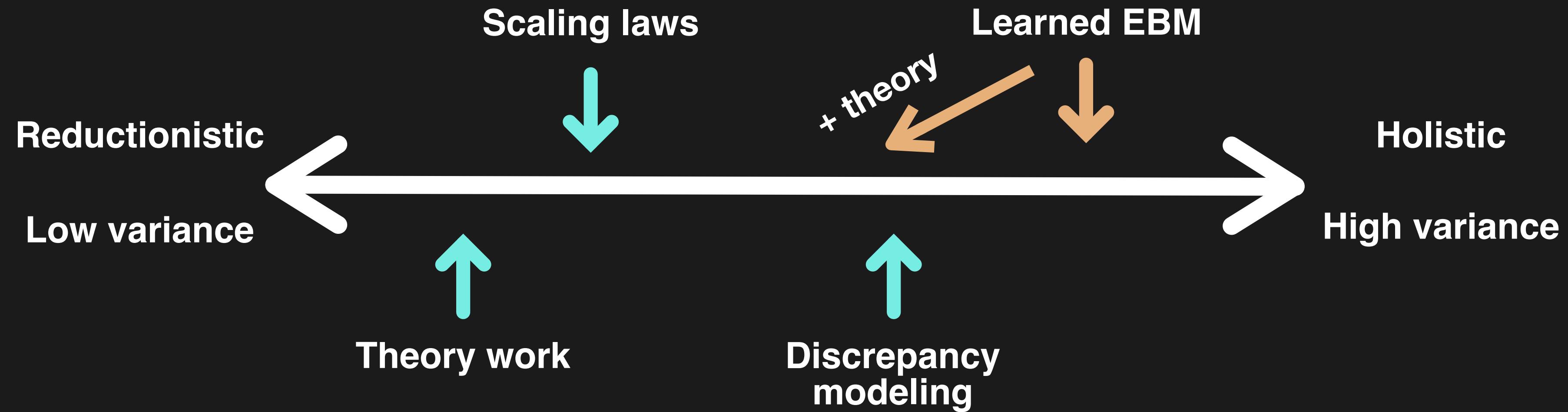
Work supported by the US DOE and NSF, and performed at the Basic Plasma Science Facility (BaPSF), UCLA.

The Large Plasma Device (LAPD) is flexible and accessible



- $T_e \sim 5-10 \text{ eV}$, $n_e \sim 10^{13}$
- Wide variety of basic & space plasma experiments
- Up to $\sim 31 \text{ m}$ shots per year: data rich
- **This work: collecting MSI & diagnostics**
 - Machine state information (MSI)
 - Discharge I & V, B profile, gas pressure, RGA
 - Diagnostics
 - Interferometer, visible light diodes
 - Fast framing camera
 - Probes (high spatial resolution)

A high-variance approach to learning from plasmas can be useful



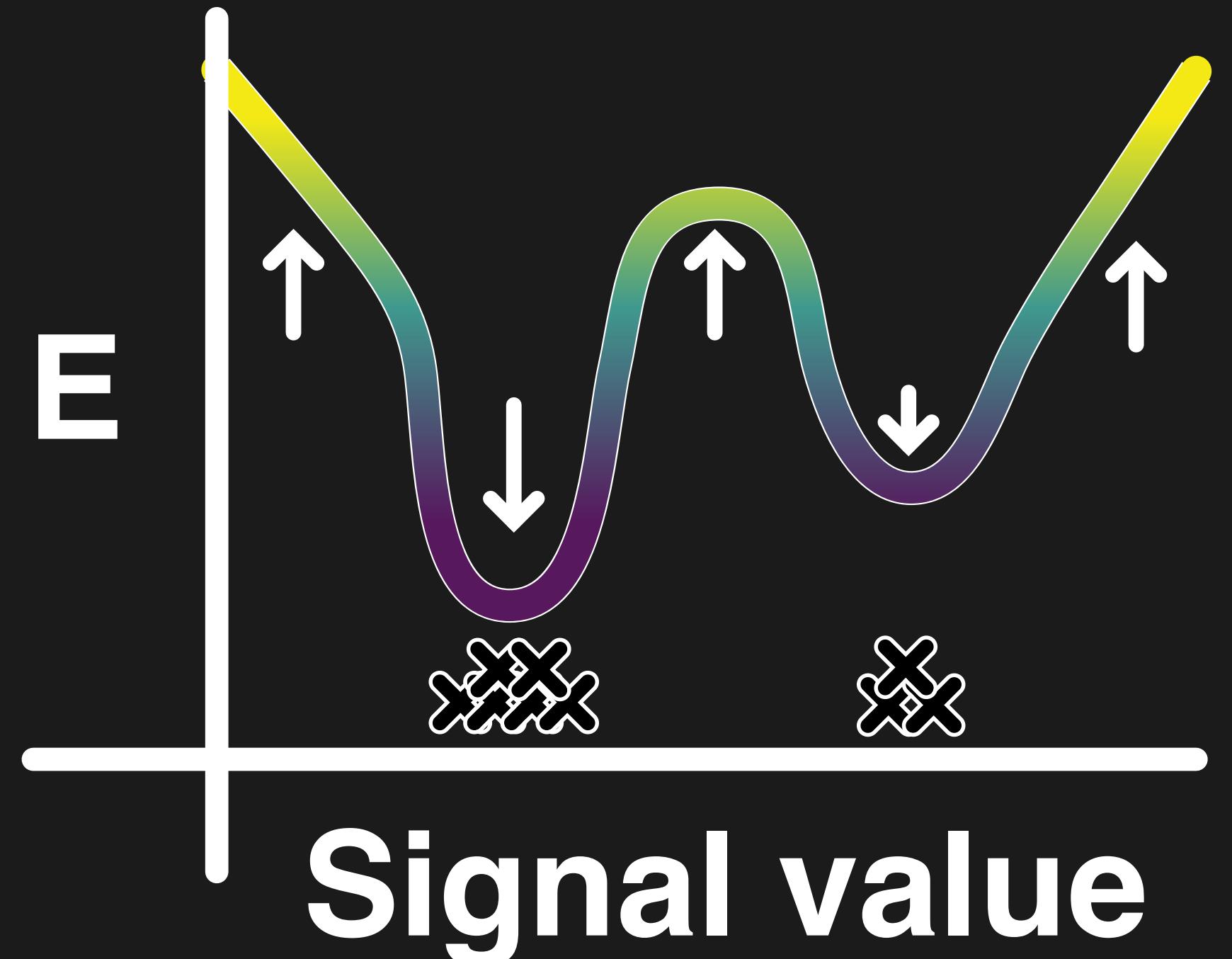
- All effects accounted for in prediction
 - Discharges may contain currently unexploitable information
- Model has few preconceived notions (low bias)
- Can introduce bias (theoretical models) later

Energy-based models (EBMs) have useful qualities for science tasks

$$p(x) \sim e^{-\beta E(x)}$$

$dim(x) = 1715$
= total # of samples

- Generative: learns a probability distribution
 - Predicts everything from everything else
 - Conditional sampling is built-in
- Energies are composable – can add models together
- Doesn't suffer from mode collapse / spurious modes



Review: Deep Generative Modelling – Bond-Taylor et al. (2021) arXiv:2103.04922

Synthetic discharges can be sampled from a learned probability distribution

$$x \sim p(x) \quad \text{dim}(x) = 1715$$

Langevin dynamics:

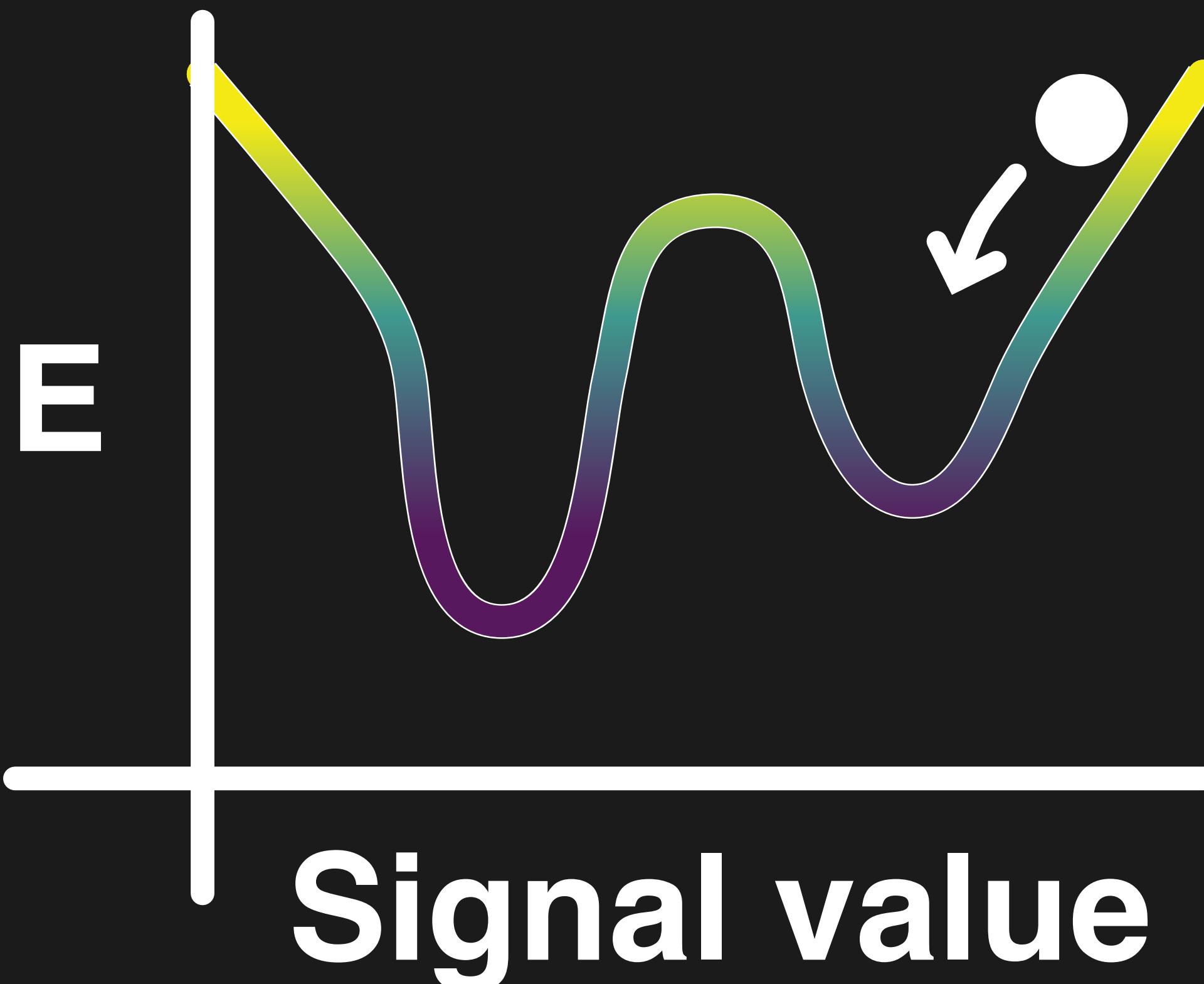
$$\ddot{x} = -\nabla E(x) + \sqrt{T\mathcal{N}(0,1)}$$

↑
potential
gradient

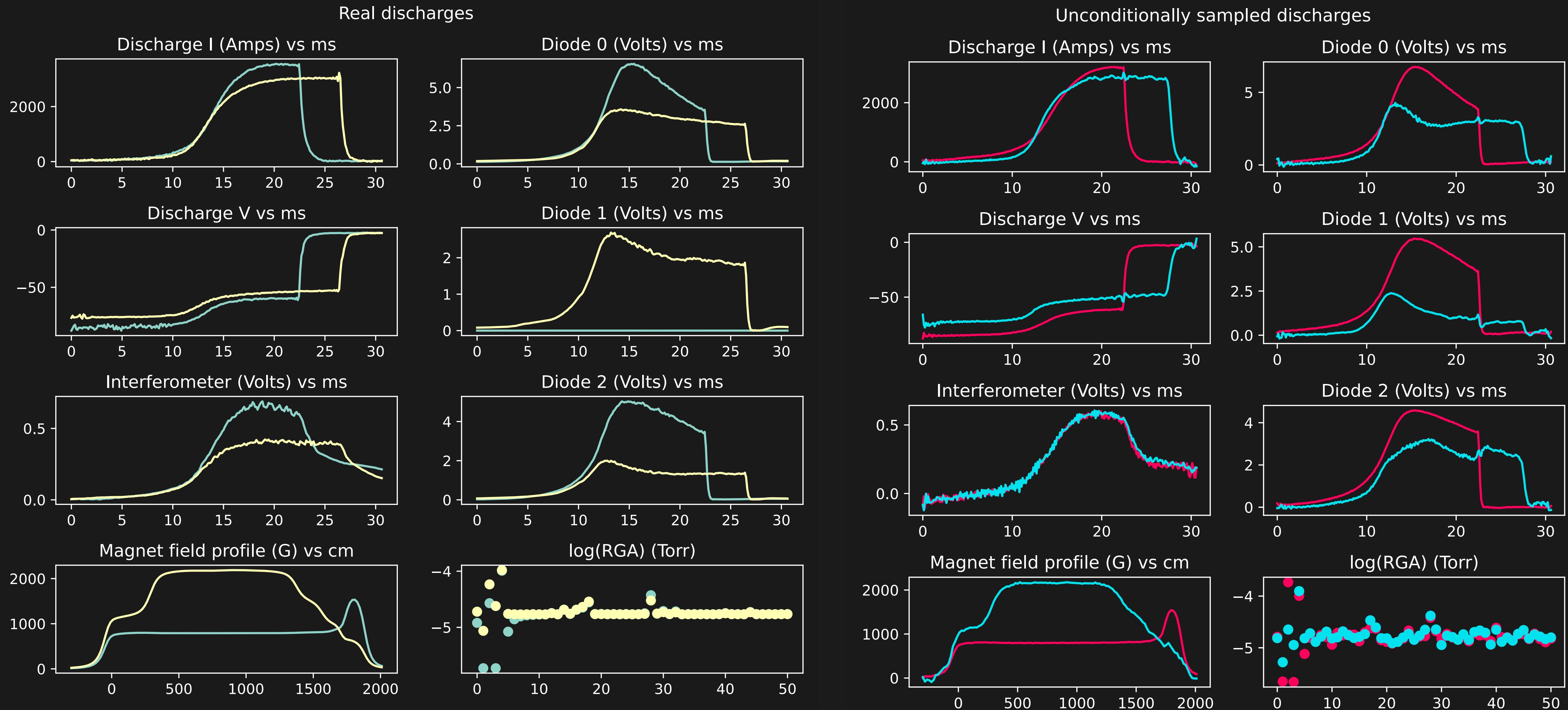
↑
gaussian
process

Du & Mordatch (2019) arXiv:1903.08689v6

Du et al. (2020) arXiv:2012.01316v4



Synthetic discharges can be sampled from a learned probability distribution

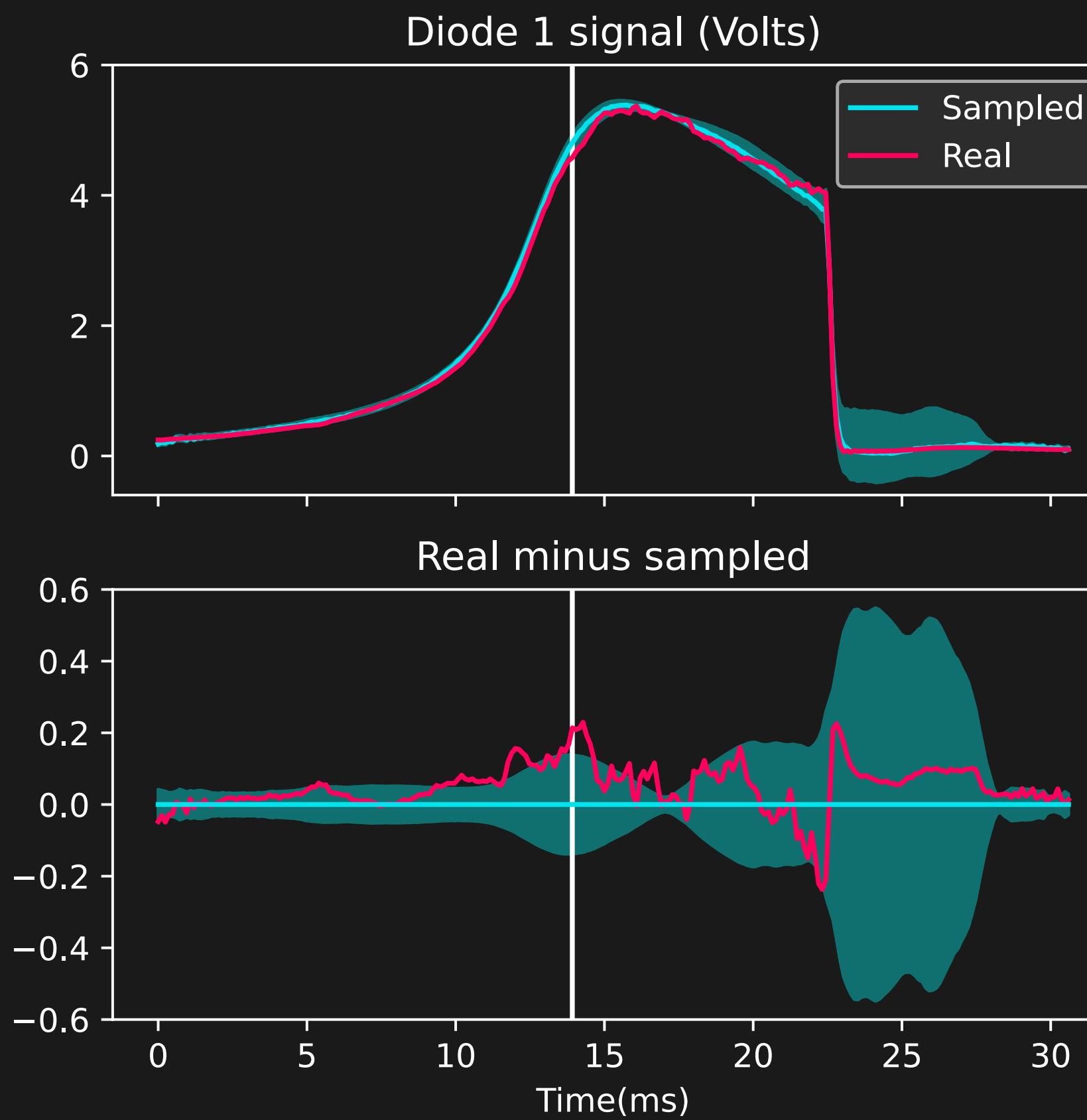
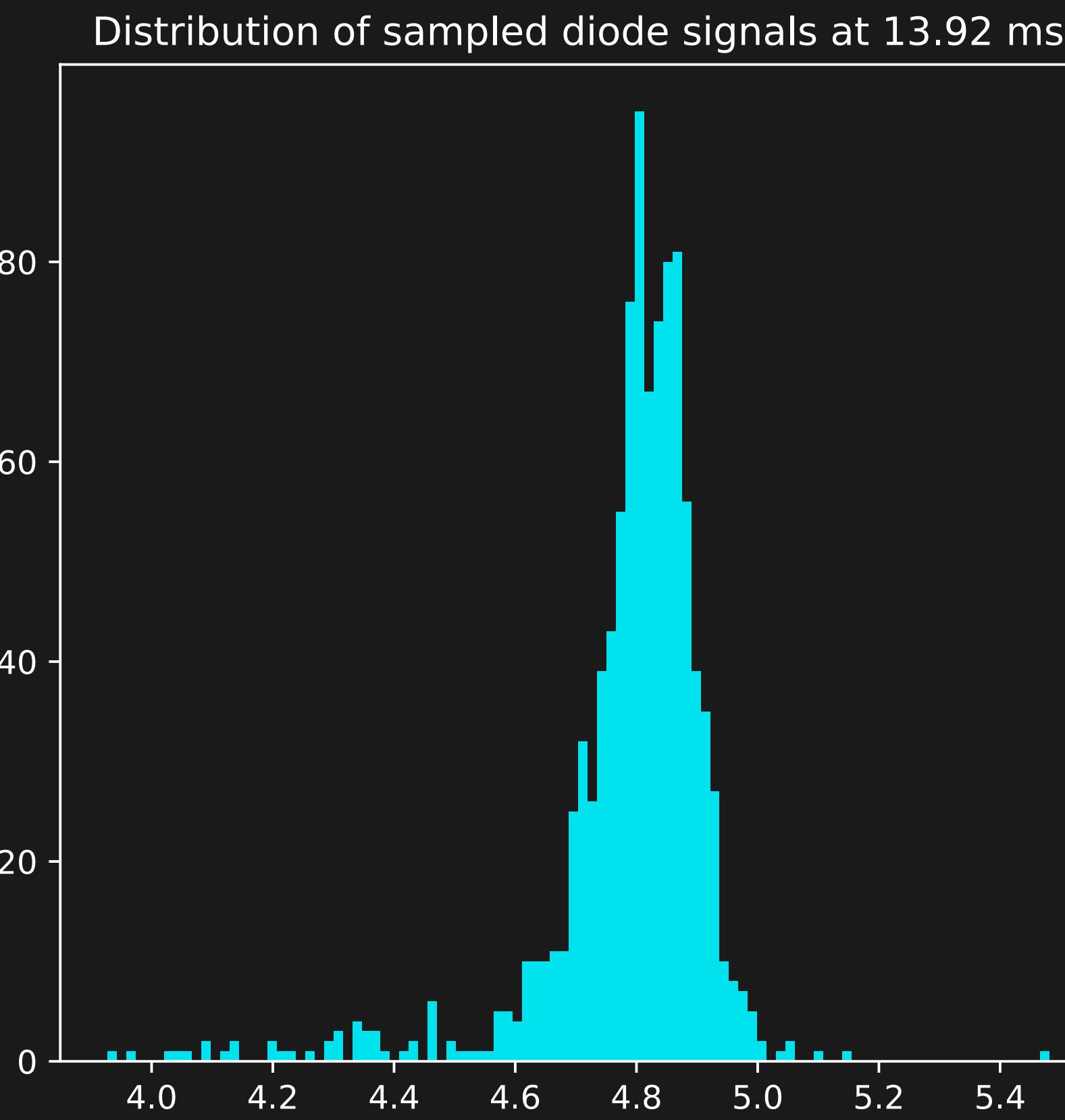


Conditional sampling can be performed to fill in missing signals

$$y \sim p(y \mid x)$$

x: discharge parameters

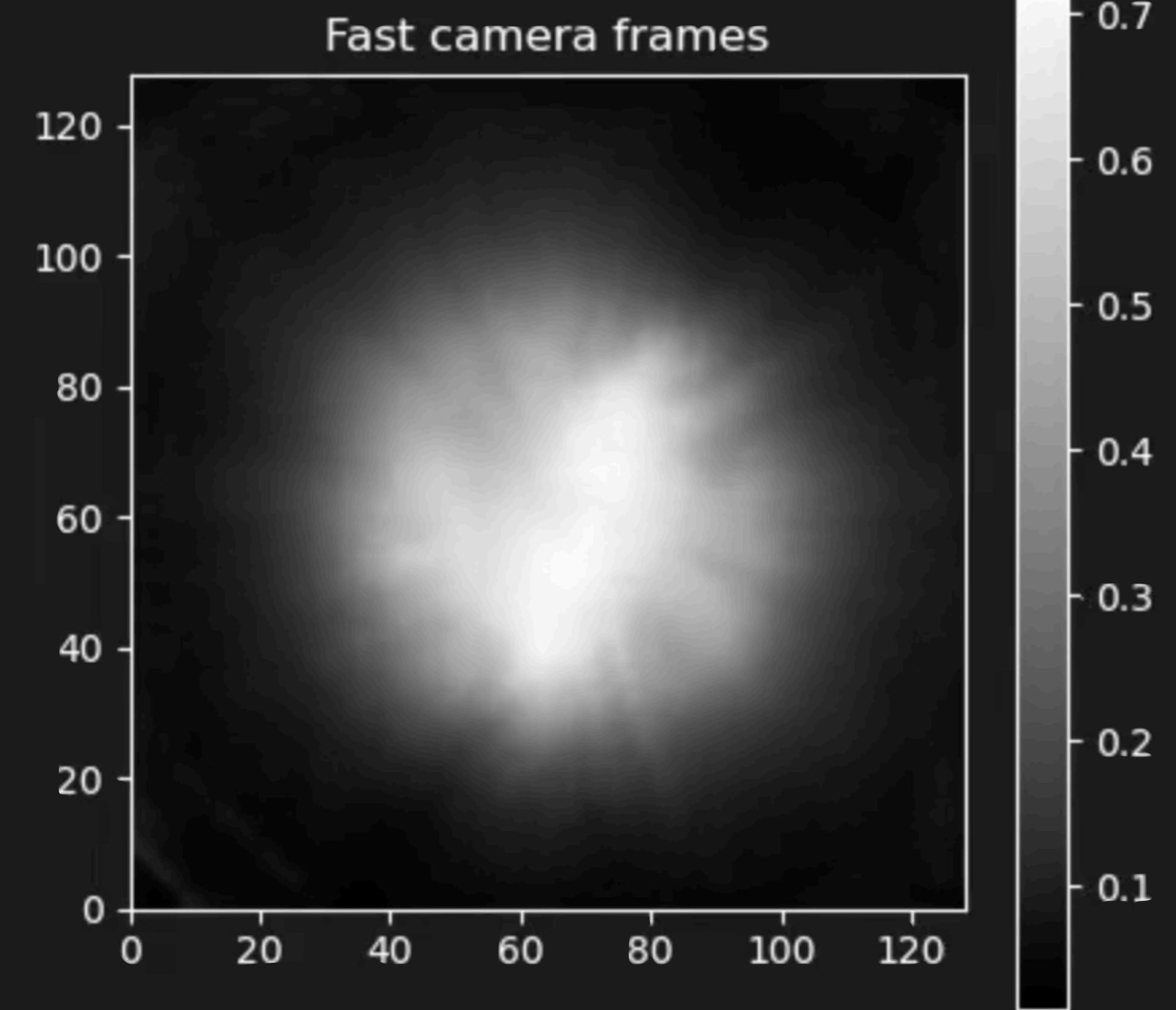
y: missing diode signal



We get conditional sampling and a measure of uncertainty for free

Future work: accelerate science campaigns + find good operating regimes

- Add fast framing camera data, probe signals
 - Infer probe signals from other diagnostics
 - Infer 2d profiles in a few discharges
- New LAPD source characterization
 - Develop model architectures
 - Interrogate model
- Long term: use model to uncover correlations, form basis for theoretical work



Summary: EBMs can be used to sample discharges

- Data pipeline was constructed for machine state information and diagnostics
- Energy-based models (EBMs) learn a probability distribution
 - assigns an energy value to each input configuration
- EBMs can be unconditionally sampled to generate synthetic discharges
- EBMs can be conditionally sampled to fill in missing signals

phil@physics.ucla.edu

(thanks for not running off to lunch)