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h(1)
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wa) W) (Deep Learning by lan Goodfellow)

A can learn any function


https://www.deeplearningbook.org
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Performing this fitting task with machine learning (nheural nets)

1. Data
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http://akosiorek.github.io/ml/2017/10/14/visual-attention.html
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1. Attention-based Future plans

'I—L  Build non-Maxwellian model
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Please enjoy the data-driven diagnostics revolution responsibly

* We use Langmuir sweeps to estimate Te and other quantities giO;%
* Neural networks help us estimate quantities in noisier and O\»Q/’O

(soon) non-Maxwellian regimes

* An attention-based approach is used to fit simple Maxwellian | C
* The attention mask gives us a measure of uncertainty

 Code can be found at:
https://github.com/physicistphil/sweep-langmuir-ml

* | have a poster on Thursday 2-5p if you want to talk more
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