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• Langmuir sweeps measure Te and Vp in the LAPD

• … which can be difficult to analyze because of fluctuations

• We use an attention-based neural network

• We get a rough measure of uncertainty

• Code is on github
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• We can measure temperature, 
plasma potential (but density 
is hard to get from esat)
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Real sweeps can be gnarly, dude
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• Lots of turbulence / fluctuations past 25 cm


• Routines that work for one parameter range will break for others

Theoretical sweepReal sweeps, not actors
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weights bias

inputs

h(1) = g(1) (W(1)Tx+b(1))

(Deep Learning by Ian Goodfellow)

^ can learn any function

https://www.deeplearningbook.org
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(Attention tutorial by Adam Kosiorek)

http://akosiorek.github.io/ml/2017/10/14/visual-attention.html
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• Get an uncertainty measure for free


• Can’t do magic



All the code, trained models, a bit of data can be found on Github
• https://github.com/physicistphil/sweep-langmuir-ml 


• Requires TensorFlow ~2.2


• Train + build your own models (please contribute!)


• Will probably be rolled into bapsflib

9

Github link

https://github.com/physicistphil/sweep-langmuir-ml
https://github.com/BaPSF/bapsflib


All the code, trained models, a bit of data can be found on Github
• https://github.com/physicistphil/sweep-langmuir-ml 


• Requires TensorFlow ~2.2


• Train + build your own models (please contribute!)


• Will probably be rolled into bapsflib

9

Github link

+

1. Attention-based

2. Disc�e�anc�-based

https://github.com/physicistphil/sweep-langmuir-ml
https://github.com/BaPSF/bapsflib


All the code, trained models, a bit of data can be found on Github
• https://github.com/physicistphil/sweep-langmuir-ml 


• Requires TensorFlow ~2.2


• Train + build your own models (please contribute!)


• Will probably be rolled into bapsflib

9

Github link

Future plans 

• Build non-Maxwellian model


• Fine tuning the models, evaluate 
cross-device performance


• Find contributors!
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Please enjoy the data-driven diagnostics revolution responsibly

• We use Langmuir sweeps to estimate Te and other quantities


• Neural networks help us estimate quantities in noisier and 
(soon) non-Maxwellian regimes


• An attention-based approach is used to fit simple Maxwellian


• The attention mask gives us a measure of uncertainty


• Code can be found at: 
https://github.com/physicistphil/sweep-langmuir-ml 


• I have a poster on Thursday 2-5p if you want to talk more
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