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Trend inference can be done using machine learning

Motivation: learn relationships from data

» Long-term goal: self-optimizing fusion reactors or other

plasma devices

* Insight can be gained from models learned on data

Generative, energy-based models for diagnostic reconstruction and analysis
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Previous work:

trend inference in and optimization of LAPD mirrors

Generative, energy-based models are useful and flexible
for plasma science

EBMs provide insight by learning exploitable structure
The model can be sampled to reconstruct any diagnostic

Uncertainty is intrinsic to the model

Learned models can be composed after training

GitHub repository

This work:
generative modeling of LAPD mirrors
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The Large Plasma Device (LAPD)
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Flexible magnetic geometry — good for mirror studies

Signals

- Many diagnostics (permanent or moveable)

* 1 Hz shot rate — up to 31 million shots per year
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Unconditional sampling: learning all modes of the distribution @ Conditional sampling: diagnostic reconstruction

Example samples

Mean of samples —

* Sample from the learned distribution: - Conditionally sample a diagnostic from the learned distribution:

Real discharge — Individual samples

T ~ pg(x)

Discharge current

Discharge voltage

ifo ~ pg(ifo|other signals)

- Samples are initialized on uniform noise . 01
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 Probability of samples and data are comparable

Learning with Energy-Based Models (EBMs)
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 Data-rich environment — ideal for ML
Collecting a comprehensive datasets @
Datasets
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EBM basics
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Training details

Energy model architecture

Algorithm 1 EBM training algorithm

( Input (699 dimensions) J

Require: Training samples a:;r, training data distribution pp, energy function Fjy, replay
buffer B, step size e, MCMC steps L, KL MCMC steps K, energy regularization strength

a, stop gradient operator §(-), replay fraction fz, batch size M

7Y ~ B sample M fz negative examples, U(—1,1) otherwise

Time series (9x76)

x9

N

d conv block
32 filters

N

I—l

(Machine settings and state (15) )—

Nonlinear 256

Total loss

(ISEll probe position (3) )

| x10%

Loss, relative energy, and MCMC gradient

Summary and future work

- Energy-based models (EBMs) are an incredibly
flexible way of modeling data

- An EBM was trained on diverse LAPD data
- Learned nearly all modes of the distribution

B+ U(-1,1) > Fill buffer from uniform distribution 9X32x76 %
while not converged do 1 conv block . . . . .
zF ~ pp — * Insight is gained directly from the energy function

X ~ B nearest-neighbor samples such that X N 7% = &

for sample step £ =1 to LL do

Lop = ? > Eo(2]) — Eo(Z))

Lxr, = 37 2 Eae) (Fe(&]) — NN(X, 2)
Lreg = 37 2i Eo(%])? + Eg(2])?
L=Lcp + Lx1, + aﬁreg

> Has gradients through

Apply VoL to 6 via the Adam optimizer
B+ BUU(—1,1) and remove samples to maintain buffer size
end while

&4

|
1d conv block
32 filters stride 2
|

9x32x38

3

I, only

> Run Langevin dynamics 1d conv block
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1d conv block
256 filters

Linear 256
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Attention block
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14.7m parameters

 Can reconstruct any diagnostic with or or without
other signals

5 51— £V, Ep(3) + eN(0,1) =G T s (gr) . - Next step: train model on 29m-shot dataset
end for ) .
7L = Q) C = [ ] N —  Final step: compose the two models to extend

e e T y results to different machine conditions

39 =zt where f = L — K > Run Langevin dynamics for KL loss 1 G e o] | : _ . o .
for KL sample step k = 1 to K do | o & w5 w0 s 130w - Add energy functions — joint distribution

iﬁf «— i,i_f—l L %ver(‘%f_l) + EN(O, 1) @cat Epoch (917 batches)
end fOI‘ 5760x19

1d con Epoch O Epoch 10
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