
• Conditionally sample a diagnostic from the learned distribution:
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Generative, energy-based models for diagnostic reconstruction and analysis

Collecting a comprehensive datasets Training detailsLearning with Energy-Based Models (EBMs)

Motivation: learn relationships from data Unconditional sampling: learning all modes of the distribution Conditional sampling: diagnostic reconstruction

Summary and future work
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• 19.7m long, 1m diameter
• Te  ~ 0.1 - 30 eV
• nₑ ~ 1012 - 5 x 10¹³ cm⁻³
• Flexible magnetic geometry — good for mirror studies

• Many diagnostics (permanent or moveable)
• 1 Hz shot rate – up to 31 million shots per year
• Data-rich environment — ideal for ML
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Trend inference can be done using machine learning
• Long-term goal: self-optimizing fusion reactors or other 

plasma devices
• Insight can be gained from models learned on data

Generative, energy-based models are useful and flexible 
for plasma science
• EBMs provide insight by learning exploitable structure
• The model can be sampled to reconstruct any diagnostic
• Uncertainty is intrinsic to the model 
• Learned models can be composed after training

Previous work: 
trend inference in and optimization of LAPD mirrors

This work: 
generative modeling of LAPD mirrors
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• Energy-based models (EBMs) are an incredibly 
flexible way of modeling data

• An EBM was trained on diverse LAPD data
• Learned nearly all modes of the distribution
• Insight is gained directly from the energy function 
• Can reconstruct any diagnostic with or or without 

other signals
• Next step: train model on 29m-shot dataset
• Final step: compose the two models to extend 

results to different machine conditions
• Add energy functions → joint distribution

• 14.7m parameters
• Implicitly generative
• Replay buffer used

• 0.95 reuse fraction
• 30 steps of size 10-2

• Gradients clipped
• Replay buffer 

refreshed after 100 
epochs
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Datasets EBM basics

Example samples

Signals

10 0 10 20 30
Time (ms)

0

5

a.
u.

 (V
ol

ts
)

Diodes

10 0 10 20 30
Time (ms)

0

2

4

Cu
rre

nt
 (k

A)

100

0

Vo
lts

Discharge current and voltage

0 20 40 60 80
Time (ms)

0.0

0.5

1.0

n L
 (m

2 )

1e19
288 GHz Interferometer

0 10 20 30 40 50
Mass (amu)

8

6

4

Pr
es

su
re

 (l
og

(To
rr)

Gas pressures

The authors would like to thank the following individuals for 
diagnostics setup, run support, and mentorship:

GitHub repository

Dissertation (chapter 6 is on EBMs)

Publication

https://github.com/physicistphil/lapd-isat-predict

https://physicistphil.com/PhD/

https://doi.org/10.1063/5.0270755

• Generative modeling
• Davide Carbone. Hitchhiker’s guide on Energy-Based Models: a comprehensive review on the relation with other generative models, sampling 

and statistical physics, June 2024. arXiv:2406.13661 [cs].
• Sam Bond-Taylor, Adam Leach, Y ang Long, and Chris G. Willcocks. Deep Generative Modelling: A Comparative Review of VAEs, GANs, 

Normalizing Flows, Energy-Based and Autoregressive Models. arXiv:2103.04922 [cs, stat], March 2021.
• EBMs

• Yann LeCun, Sumit Chopra, Raia Hadsell, Marc’Aurelio Ranzato, and Fu Jie Huang. A Tutorial on Energy-Based Learning. 2006.
• Yilun Du and Igor Mordatch. Implicit Generation and Generalization in Energy-Based Models. arXiv:1903.08689 [cs, stat], June 2020.
• Yilun Du, Shuang Li, and Igor Mordatch. Compositional Visual Generation and Inference with Energy Based Models, December 2020. 

arXiv:2004.06030 [cs].
• Yilun Du, Shuang Li, Y ash Sharma, Joshua B. Tenenbaum, and Igor Mordatch. Unsupervised Learning of Compositional Energy Concepts, 

November 2021. arXiv:2111.03042 [cs]
• Yilun Du, Shuang Li, Joshua Tenenbaum, and Igor Mordatch. Improved Contrastive Divergence Training of Energy Based Models. 

arXiv:2012.01316 [cs], June 2021. arXiv: 2012.01316.
• Erik Nĳkamp, Mitch Hill, Song-Chun Zhu, and Ying Nian Wu. Learning Non-Convergent Non-Persistent Short-Run MCMC Toward Energy-Based 

Model, November 2019. arXiv:1904.09770 [cs, stat].
• Erik Nĳkamp, Mitch Hill, Tian Han, Song-Chun Zhu, and Ying Nian Wu. On the Anatomy of MCMC-Based Maximum Likelihood Learning of 

Energy-Based Models. Proceedings of the AAAI Conference on Artificial Intelligence, 34(04):5272–5280, April 2020. ISSN 2374-3468, 2159-5399. 
doi: 10.1609/aaai.34i04.5973

• Gradient clipping: Prem Seetharaman, Gordon Wichern, Bryan Pardo, and Jonathan Le Roux. AutoClip: Adaptive Gradient Clipping for Source 
Separation Networks. July 2020. arXiv:2007.14469 [cs, eess, stat].+ machine state information (MSI)

Timeframe Two run weeks Three years continuous

Dates Feb 2023, Apr 2024 Sep 2021 to Oct 2024

Number of shots 130 thousand 29 million
subsampled to 250 thousand

Probe data Yes No

MSI + passive 
diagnostics

Yes Yes

Configuration 
diversity

Yes, ~60 randomly 
sampled

No, standard configurations

Condition 
diversity

No, only two 
different weeks

Yes
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Energy model architecture
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Distribution of inputs: training data vs unconditional samples
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Algorithm 1 EBM training algorithm

Require: Training samples x+
i , training data distribution pD, energy function E✓, replay

bu↵er B, step size ✏, MCMC steps L, KL MCMC steps K, energy regularization strength

↵, stop gradient operator ⌦(·), replay fraction fB, batch size M
B  U(�1, 1) . Fill bu↵er from uniform distribution

while not converged do
x+
i ⇠ pD

x̃0
i ⇠ B sample MfB negative examples, U(�1, 1) otherwise

X ⇠ B nearest-neighbor samples such that X \ x̃0
i = ?

for sample step ` = 1 to L do . Run Langevin dynamics

x̃`
i  x̃`�1

i � ✏2

2 rxE✓(x̃
`�1
i ) + ✏N (0, 1)

end for
x̃L
i = ⌦(x̃L

i )

x̂0
i = x̃`

i where ` = L�K . Run Langevin dynamics for KL loss

for KL sample step k = 1 to K do
x̂k
i  x̂k�1

i � ✏2

2 rxE✓(x̂
k�1
i ) + ✏N (0, 1)

end for

LCD =
1
M

P
i E✓(x̃

+
i )� E✓(x̃L

i )

LKL =
1
M

P
i E⌦(✓)(E✓(x̂K

i )�NN(X, x̂K
i ) . Has gradients through MCMC

Lreg =
1
M

P
i E✓(x̃

+
i )

2
+ E✓(x̃L

i )
2

L = LCD + LKL + ↵Lreg

Apply r✓L to ✓ via the Adam optimizer

B  B [ U(�1, 1) and remove samples to maintain bu↵er size

end while
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• Sample from the learned distribution:

• Freeze gradients (traditional way in literature), or
• Use an auxiliary energy function (novel)

• Frozen gradients lead to unphysical solutions
• Additional diagnostics improve interferometer reconstruction
• Can reconstruct any diagnostic using an EBM
• EBMs intrinsically have uncertainty

• Samples are initialized on uniform noise
• Use Langevin dynamics over the energy surface

• Model learned the vast majority of modes
• Probability of samples and data are comparable

• Symmetry in probe position is evident (at times)
• Information is embedded in the energy surface

• Relationships need not be invertible
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