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An open dataset from the Large Plasma Device for machine learning and profile prediction

Collecting a  comprehensive diagnostic set

• Used Latin-
hypercube sampling 
(LHS) for efficient 
coverage of machine 
actuator space

• Actuators changed
• Source field
• Mirror field
• Midplane field
• Discharge voltage
• Gas puff voltage
• Gas puff duration

• Two run weeks: DR1 (Feb 2023), DR2 (Apr 2024)
• DR2 differences

• Added monochromators (667, 707,  587 nm)
• Four different probe positions
• Two additional gas puff durations (5 ,10 ms in 

addition to 38 ms)

Training data: examples, balance, and bias

Predicting Isat using a dense neural networkMotivation: develop tools to infer trends autonomously Inferring trends using the learned model

Validating the model

Summary and future work Acknowledgments

References

Fixed diagnostics
• Thomson scattering
• Interferometers (x2)
• Light diodes (x5)
• Fast framing camera
• Diamagnetic loop
• Monochromator (DR2 

only)

Machine state 
information (MSI)
• Discharge current, 

voltage
• Total gas pressure
• RGA partial pressures
• Axial magnetic field
• Heater current, voltage
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• 19.7m long, 1m diameter
• Te  ~ 0.1 - 30 eV
• nₑ ~ 1012 - 5 x 10¹³ cm⁻³
• Flexible magnetic geometry — good for mirror studies

• Many diagnostics (permanent or moveable)
• 1 Hz shot rate – up to 31 million shots per 

year (have 15m+ shots recorded right now)
• Data-rich environment — ideal for ML

Phil Travis1, Troy Carter1,2

1. UCLA Department of Physics and Astronomy
2. Oak Ridge National Laboratory

phil@physics.ucla.edu

Work was performed at the Basic Plasma Science Facility (BaPSF), UCLA, supported by DOE FES with additional funding from the NSF

Trend inference can be done using machine learning
• Long-term goal: self-optimizing fusion reactors
• Short-term goal: infer trends in Isat in various random 

mirror-like configurations for operations optimization

Releasing an open dataset for ML applications
• Collected first-of-its-kind diverse dataset
• LAPD configurations were randomly generated and 

sampled from a set of actuators
• A free, open dataset is useful for benchmarking ML 

architectures and for use in plasma physics education

Short term: infer trends in how to operate the LAPD
• Built a machine learning model for Isat at any point in the 

machine
• Mirror machine, discharge voltage, and gas puff duration 

trends agree with intuition
• Can optimize for strongest and weakest axial variation of Isat

• Trend generally agrees

Next: infer / optimize transport
• Many more diagnostics were recorded, including cross-field 

particle flux

Probe diagnostics
• Langmuir sweeps – Te
• Triple probes

• Isat, Te, Vf
• Flux probes

• Isat, Vf x2
• Isat ~ ne √Te

1.0 m

18 m
The Large Plasma Device (LAPD)
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β-NLL loss function
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Model calibration and validation Making predictions Checking predictions with intuition

Optimizing axial variation

Inferring trends
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Effect on x-z profile when changing B in an M=3 mirror
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Weakest and strongest and axial variation 
for mean Isat > 7.5 mA / mm2

Weakest
Strongest
Intermediate
Total error
Test set RMSE

Data breakdown by class and dataset (percent)

B source (G) B mirror (G) B midplane (G)

Train Test All Train Test All Train Test All
500 4.77 0 4.29 250 4.30 8.41 4.72 250 8.25 21.01 9.55
750 3.34 12.61 4.29 500 30.49 8.41 28.23 500 43.80 8.41 40.19
1000 43.13 78.99 46.78 750 6.68 16.81 7.72 750 6.62 52.19 11.27
1250 12.59 0 11.30 1000 28.85 57.97 31.82 1000 26.36 5.78 24.26
1500 19.23 0 17.27 1250 3.34 4.20 3.43 1250 9.24 0 8.30
1750 1.91 0 1.71 1500 26.34 4.20 24.08 1500 5.73 12.61 6.43
2000 15.03 8.41 14.35

Gas puff voltage (V) Discharge voltage (V) Axial probe position (cm)

70 12.11 16.81 12.59 70 12.22 8.41 11.83 639 12.48 8.41 12.06
75 6.68 0 6.00 80 5.25 0 4.72 828 17.07 36.28 19.03
80 11.46 8.41 11.15 90 2.86 8.41 3.43 859 12.48 8.41 12.06
82 41.49 57.97 43.17 100 3.34 8.41 3.86 895 33.01 30.10 32.71
85 14.13 0 12.69 110 8.77 0 7.87 1017 12.48 8.41 12.06
90 14.13 16.81 14.40 112 20.62 0 18.52 1145 12.48 8.41 12.06

120 3.82 8.41 4.29
130 0.95 0 0.86
140 2.86 8.41 3.43
150 39.30 57.97 41.20

Gas puff duration (ms) Vertical probe position (cm)
38 94.27 91.59 94.00 ≈0 36.26 46.08 37.26
< 38 5.73 8.41 6.00 ∕= 0 63.74 53.92 62.74

Input or actuator
Red = tested

Weakest 
Isat = any

Weakest
Isat > 7.5

Strongest
Isat > 7.5

Source field 750 G 1000 G 500 G
Mirror field 1000 G 750 G 500 G
Midplane field 250 G 250 G 1500 G
Gas puff voltage 70 V 75 V 90 V
Discharge voltage 130 V 150 V 150 V
Gas puff duration 5 ms 5 ms 38 ms
Run set flag on on on
Top gas puff flag on off off

10 20 30
Gas puff duration (ms)
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• Inputs (12 total)
• Actuators and machine condition
• Probe position

• Outputs: time-averaged Isat (over 
10-20 ms)

• 67 dataruns; 59 train, 8 test
• Conditions for most dataruns are 

randomly selected
• Total shot (example) count: 

131,550
• Complete input range covered

• Via LHS
• 272,160 possible combinations

• However, the input ranges are not 
covered evenly, e.g.,
• 82V gas puff
• 112V, 150V discharge voltages

• Only 6 runs where the gas puff 
duration was less than 38 ms 

• Test set cannot hit all conditions
• Took care to make a 

representative set

• Can use weight decay to 
calibrate uncertainty
• but relative uncertainty 

becomes less useful
• Test set performance changes 

with test set 
• Hand picked (set 0)
• Randomly selected (sets 1-6)

• Median RMSE is used as a 
baseline when plotting 
predictions with uncertainty

• Cheap models → comprehensive 
search is tractable

• Computed 127M different machine 
configurations, x5 models
• Takes 151 seconds on an RTX 3090

• Isat increases with discharge voltage
• Mirror width is modified as expected with changes in B

• Can find conditions needed strongest 
and weakest axial variation on-axis

• Uncertainty is very large

• Model suggests:
• Axial gradient scale length increases with a decrease in gas 

puff duration
• Intrinsic x-y asymmetry in the data

• Take with a grain of salt (lack of diversity)

• Strongest and intermediate axial 
variation are in a range covered 
by model

• Weakest case is in a new regime 
not seen by the model

• Probe at 600 cm is beyond model 
training data

• Isat calibration is suspect

• * preliminary interferometer and 
Te measurements suggest flat 
axial profile in weakest case

• Further work: better Isat 
calibration

• Predicting a single diagnostic 
requiring an absolute 
calibration is risky

• A free, open, diverse dataset was created for 
machine learning purposes

• A machine learning (ML) model was trained on Isat 
measurements to infer trends

• Inferred trends agree with intuition
• ML model finds cases with strong and weak axial 

variation, but absolute values do not agree
• More diagnostics and time-series data will be 

processed and used as training data
• Additional data collection may be necessary

• Trained linear, linear-like 
models as a baseline

• A nonlinear model is 
required → NN is a good fit

• Performance can be 
improved by:
• Increased diversity

(measured by number of 
dataruns)

• Providing more 
information (run set and 
top gas puff flag)

• Ensembles
• Using larger models

• DR2_10 (a test set datarun) is slightly on the worse 
side of the predictive ability of the model

• Model uncertainty grows when predicting outside 
training data envelope

• β-NLL loss did not appear to improve calibration
• but helped stabilize training
• may have acted as a mild regularizer

• Dense NN
• 4 layers
• 256 wide
• 5-network 

ensemble
• Leaky ReLU 

activations
• β-NLL loss
• Adam optimizer
• Epoch-1 learning rate 

decay schedule
• Gradient clipping

• Jia Han
• Tom Look
• Lukas Rovige
• Chris Niemann
• Shreekrishna Tripathi

• Steve Vincena
• Yhoshua Wug
• Zoltan Lucky
• Pat Pribyl
• Tony Peebles

• Ryan Buckley
• Walter Gekelman
• Jacob Bortnik

• Expect predicted Isat to be biased to lower values
• Significant difference in Isat distribution between 

DR1 and DR2

DistributionExamplesDescription
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• Measured Isat values matched 
model predictions off-axis 
• But single shot with low discharge 

current (odd cathode state)
• Isat calibration state unknown
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Strongest
Intermediate
Weakest
Model 
Test RMSE

Case Predicted Measured
Strongest 3.42 6.6
Intermediate 1.32 1.95
Weakest 0.04 0.0*
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Axial variation measured by SD

GitHub repository
https://github.com/physicistphil/lapd-isat-predict
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