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Motivation: develop tools to infer trends autonomously

Trend inference can be done using machine learning

+ Long-term goal: self-optimizing fusion reactors

« Short-term goal: infer trends in Isat in various random
mirror-like configurations for operations optimization

Releasing an open dataset for ML applications
 Collected first-of-its-kind diverse dataset

- LAPD configurations were randomly generated and
sampled from a set of actuators

* A free, open dataset is useful for benchmarking ML
architectures and for use in plasma physics education
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Short term: infer trends in how to operate the LAPD
 Built a machine learning model for Isat at any point in the

machine

- Mirror machine, discharge voltage, and gas puff duration
trends agree with intuition

- Can optimize for strongest and weakest axial variation of Isat

 Trend generally agrees

Next: infer / optimize transport

- Many more diagnostics were recorded, including cross-field

particle flux

The Large Plasma Device (LAPD)
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Flexible magnetic geometry — good for mirror studies

Machine state
information (MSI)

» Discharge current,

voltage

- Total gas pressure

- RGA partial pressures

 Axial magnetic field

- Heater current, voltage

Fixed diagnostics

- Thomson scattering

Interferometers (x2)
Light diodes (x5)
Fast framing camera
Diamagnetic loop

Monochromator (DR2
only)

Probe diagnostics

« Langmuir sweeps — Te

* Triple probes

- Isat, Te, Vf

* Flux probes

- |sat, Vf x2

* Isat ~ n, |Te

Collecting a comprehensive diagnostic set

Discharge current and voltage
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- Two run weeks: DR1 (Feb 2023), DR2 (Apr 2024)

« DR2 differences

= - Added monochromators (667, 707, 587 nm)
 Four different probe positions
- Two additional gas puff durations (5,10 ms in
addition to 38 ms)
Fast Framing Camera
M=3,t=6ms
120 .
Random machine
100 configurations
80 .
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year (have 15m+ shots recorded right now)
- Data-rich environment — ideal for ML
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* Inputs (12 total)
« Actuators and machine condition

* Probe position
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Predicting Isat using a dense neural network

Architecture: dense NN

 Dense NN
4 layers
« 256 wide

* 5-network
ensemble

* Leaky RelLU

1

Ls_NLL = 5

(log 07;2 (%) +

(14(%n) = yn)”

activations
B-NLL loss
Adam optimizer

Epoch™ learning rate
decay schedule

Gradient clipping

022 (Xn)

B-NLL loss function

) StopGrad (afﬂ>

« B-NLL loss did not appear to improve calibration

* but helped stabilize training

* may have acted as a mild regularizer

Data and prediction error, DR2_10 profiles
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- DR2_10 (a test set datarun) is slightly on the worse
side of the predictive ability of the model

- Model uncertainty grows when predicting outside

training data envelope

Description

 QOutputs: time-averaged Isat (over

10-20 ms)

« 6/ dataruns; 59 train, 8 test

« Conditions for most dataruns are
randomly selected

- Total shot (example) count:

131,550

- Complete input range covered

* Via LHS

« 272,160 possible combinations

- However, the input ranges are not
covered evenly, e.qg.,

- 82V gas puff
- 112V, 150V discharge voltages

* Only 6 runs where the gas puff
duration was less than 38 ms

* Test set cannot hit all conditions

* Took care to make a
representative set

Work was performed at the Basic Plasma Science Facility (BaPSF), UCLA, supported by DOE FES with additional funding from the NSF

Isat (A/mmz)

lsat (MA)

Model calibration and validation

B-NLL model weight decay scan

Mean-squared error
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Training data: examples, balance, and bias

Examples

Time series of Is3+ at x=0 (DR2)
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DR 17, z=639 cm
—— DR 28, z=1022 cm
TS (DR1)

—-==- TS (DR2)
Averaging window

Standard deviation of z-score

- Can use weight decay to

with test set

calibrate uncertainty

 but relative uncertainty
becomes less useful

- Test set performance changes

- Hand picked (set 0)
- Randomly selected (sets 1-6)
- Median RMSE is used as a

e baseline when plotting
prersge predictions with uncertainty
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Example Is5 profiles from datarun 15

Port 17
Port 21
Port 26
Port 33
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Gas puff voltage (V)

| Discharge voltage (V)

| Axial probe position (cm)

70 12.11 16.81 12.59 | 70 12.22 841 11.83 | 639 12.48 8.41 12.06
75 6.68 0 6.00 | 80 5.25 0 4.72 | 828 17.07 36.28 19.03
80 11.46 841 11.15 | 90 2.86 8.41 3.43 | 859 12.48 8.41 12.06
82 41.49 57.97 43.17 | 100 3.34 8.41 3.86 | 895 33.01 30.10 32.71
85 14.13 0 12.69 | 110 8.77 0 7.87 | 1017 12.48 841 12.06
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120 3.82 8.41 4.29
130 0.95 0 0.86
140 2.86 8.41 3.43
150 39.30 57.97 41.20
Gas puff duration (ms) Vertical probe position (cm)
38 94.27 91.59 94.00 | =0 36.26 46.08 37.26
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« Expect predicted Isat to be biased to lower values

- Significant difference in Isat distribution between

DR1 and DR2
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GitHub repository

https://github.com/physicistphil/lapd-isat-predict

Inferring trends using the learned model

Making predictions

- Cheap models @ comprehensive
search is tractable

Checking predictions with intuition

Effect on x-z profile when changing B in an M=3 mirror

Mirror M=3 Bsource=1500 G (M=3.0)

Discharge voltage: effect on x and z profiles
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 Can find conditions needed strongest
and weakest axial variation on-axis

» Uncertainty is very large

@

lsat (MA / mm?)

Input or actuator

Weakest Weakest Strongest

Red = tested Isat =any Isat>7.5 Isat>7.5
Source field 750 G 1000G 500G
Mirror field 1000G 750G 500 G
Midplane field 250G 250G 1500 G
Gas puff voltage 70V 75V 90V
Discharge voltage 130V 150 V 150 V
Gas puff duration 5 ms 5ms 38 ms
Run set flag on on on

Top gas puff flag on off off

700 800 900 1000 1100 700 800 900 1000 1100

z position (cm)

* |sat increases with discharge voltage
- Mirror width is modified as expected with changes in B

Inferring trends

Axial gradient vs gas puff duration x- and y-axis ls5: values at equal radius

1 kG flat field, x=0 20
- . . — 200 ..... |dent|ty 104
Weakest and strongest and axial variation = 1.2 1 175 —~
for mean le;t > 7.5 mA / mm? < 1o - g € 15 -
22.5 — T 15.0 ¢ £ 103
——— (@)]
Weakest B € 0.8 12.5 © E o
20.0 9 —— Strongest < o — 10 - =
—— Intermediate o £ 0.6 - 100 g 3 =102 S
_ — -+ n o
1751 == Total error i 5 —o— Mean 7.5 2 % :
- 4 —_ G© | !
15.0 Test set RMSE g 0.4 —  OEepistemic 5.0 % > 5 1
: e o L ' © — = 10
% 0.2 | Onteatoric |55 ) < .
12.5 o = —0— Scale length ' 0 [
0.0 T T T 0.0 — T T T — 100
10.04 -~ 10 20 30 0 5 10 15 20
s -+ —_ Gas puff duration (ms) All x-axis lsa: (MA / mm?2)

800 900 1000 1100

Z position (cm)

* Model suggests:
- Axial gradient scale length increases with a decrease in gas

puff duration

Validating the model

Measured and predicted /¢4t

* Intrinsic x-y asymmetry in the data

- Take with a grain of salt (lack of diversity)

Measured and predicted /g4t
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o« ¥ preliminary interferometer and
Te measurements suggest flat

axial profile in weakest case

Axial variation measured by SD

* Further work: better Isat

- Measured Isat values matched
model predictions off-axis

- But single shot with low discharge

o _ _ _ current (odd cathode state)
* Predicting a single diagnostic , ,
* Isat calibration state unknown

Case Predicted Measured calibration
Strongest 3.42 6.6

Intermediate 1.32 1.95

Weakest 0.04 0.0*

requiring an absolute

calibration is risky

Summary and future work
A free, open, diverse dataset was created for
machine learning purposes

A machine learning (ML) model was trained on Isat
measurements to infer trends

Inferred trends agree with intuition

ML model finds cases with strong and weak axial
variation, but absolute values do not agree

More diagnostics and time-series data will be
processed and used as training data

Additional data collection may be necessary
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