Predicting profiles in LAPD mirror configurations
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o The Large Plasma Device (LAPD) 6 Training data were collected to predict Langmuir probe profiles. @ Accurately predicting isat time series and profiles:
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— trained an accurate feedforward neural network to discharges for any given constraint
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 Does prediction accuracy change with downsampling? + Can fillin missing data ) Perform traditional analysis of probe data to calculate particle flux - Any arbitrary diagnostic can be reconstructed given others
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« Which NN architectures are best suited to this task? « Optimize LAPD mirror configurations given an objective function method of finding good architectures and signal combinations
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