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Predicting profiles in LAPD mirror configurations

Training energy-based models for diagnostic reconstructionTraining energy-based models for diagnostic reconstruction

• Missing signals can be reconstructed based on what the 
model has seen before
• Very accurate, provides uncertainty

• Model can be conditionally sampled to find likely 
discharges for any given constraint

0

1

Diode 1 signal (Volts)
Sampled
Real
Sampled mean

0 5 10 15 20 25 30
Time(ms)

0.5

0.0

0.5

Real minus sampled

• Conditionally 
sample: fill in 
missing data

Missing signal

Existing signals
<latexit sha1_base64="NHxJ+5OI0Wpc3NiaEQyUOTa+u7U=">AAAB/XicbZDLSgMxFIYzXmu9jZedm2Ar1E2ZKaIui25cVrAXaIeSyWTa0CQzJBlxHIqv4saFIm59D3e+jWk7C239IfDxn3M4J78fM6q043xbS8srq2vrhY3i5tb2zq69t99SUSIxaeKIRbLjI0UYFaSpqWakE0uCuM9I2x9dT+rteyIVjcSdTmPicTQQNKQYaWP17cNyCnuKchhXDHAawIfTct8uOVVnKrgIbg4lkKvRt796QYQTToTGDCnVdZ1YexmSmmJGxsVeokiM8AgNSNegQJwoL5teP4YnxglgGEnzhIZT9/dEhrhSKfdNJ0d6qOZrE/O/WjfR4aWXUREnmgg8WxQmDOoITqKAAZUEa5YaQFhScyvEQyQR1iawognBnf/yIrRqVfe8enZbK9Wv8jgK4AgcgwpwwQWogxvQAE2AwSN4Bq/gzXqyXqx362PWumTlMwfgj6zPHwQPk6g=</latexit>

y ⇠ p(y | x)

Training data were collected to predict Langmuir probe profilesTraining data were collected to predict Langmuir probe profiles

MotivationMotivation

General NN-based prediction questionsGeneral NN-based prediction questions

• In a high-variance (learned) approach:
• All effects accounted for in prediction
• Model has few preconceived notions 

• Learn to assign energy values to inputs
• the model is generative — learns an 

implicit probability distribution
• Trained by pushing energy down on data, up 

on samples (contrastive divergence)

• Learns the relationship between all input 
variables – can predict anything from 
anything
• Conditional sampling is easy
• Solution to inverse problems are built-in
• Can fill in missing data

• Energies are additive: can easily combine 
models
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Accurately predicting isat time series and profilesAccurately predicting isat time series and profiles

SummarySummary

Nitty-gritty training details Nitty-gritty training details 

Future workFuture work

Fixed diagnostics
• Thomson scattering
• Interferometers (x2)
• Light diodes (x5)
• Fast framing camera
• Diamagnetic loop

Built out data 
aggregation system
Machine state 
information (MSI)
• Discharge current
• Discharge voltage
• Gas pressure
• RGA partial pressures
• Axial magnetic field

The Large Plasma Device (LAPD)The Large Plasma Device (LAPD)

• 19.7m long, 1m diameter
• Te  ~ 5-10 eV
• nₑ up to ~10¹³ cm⁻³
• Flexible magnetic geometry — good for 

mirror studies
• 1 Hz shot rate – up to 31 million shots per 

year (have 15m+ shots recorded right now)
• Hundreds of diagnostics ports
• Data-rich environment — ideal for ML

Phil Travis, Tom Look, Lukas Rovige, Chris Niemann, Pat Pribyl, Troy Carter
UCLA Department of Physics and Astronomy

UCLA Basic Plasma Science Facility
phil@physics.ucla.edu

Work was performed at the Basic Plasma Science Facility (BaPSF), UCLA, supported by DOE FES with additional funding from the NSF

• Any arbitrary diagnostic can be reconstructed given others 
→ paves the way for finding machine configurations required 
for given discharge characteristics

• A diverse dataset, well diagnosed dataset was created
→ provides a seed for further parameter space exploration

• Profile prediction using feedoforward neural networks work is 
possible and has decent prediction accuracy
→ now have a benchmark for EBMs and have cheaper a 
method of finding good architectures and signal combinations

Architectures (SiLU activations):
• Dense: 6 layers, 256 hidden units each
• CNN: 10 convolutions (over time); 

alternating 5 and 21 width-kernels; 16 
channels. 2 dense layers. Time-constant 
data concatenated at each time point

Hyperparameters
• Adam, learning rate 3e-4, momentum 0.99
• No weight decay or any other regularization
• Batch size 128 (~185 batches)
• 1000 epochs; early stopping employed
• 80-20 train-test split + 500 validation shots

• Goal of this project: autonomously optimize LAPD 
mirror transport
• Requires a method of predicting required settings to 

yield particular discharge characteristics
• Generative modeling (modeling a probability distribution) 

provides this ability 
→ energy based models (EBMs) are a good 
candidate as an LAPD surrogate

• Predicting requires training on lots of data 
→ built out data collection pipeline for auxiliary 
diagnostics and machine state information

• Data needs to be diverse and well diagnosed 
→ collected LAPD data with Langmuir probe 
diagnostics in a variety of mirror configurations

• Generative model needs a benchmark for (forward model-
like) conditional sampling performance
→ trained an accurate feedforward neural network to 
predict ion saturation current time traces

• Does prediction accuracy change with downsampling?
• Which diagnostics are most important for predicting 

profiles and transport-related quantities?
• Can transport quantities be accurately predicted without 

spectral information?
• Does strictly physical interpretations of the data limit 

prediction ability?
• Which NN architectures are best suited to this task?

• 200k shots with machine state and axial diagnostics
• 100k shots with probe data
• 50k shots with fast framing camera footage
• Intersection of above after cleaning: 30k examples

• Barely enough for deep learning techniques

• Downsampling needed to ease data movement 
and keep model sizes small
• Downsampled to common sample rate of 2.5 kHz
• Fast camera considerably downsampled 

(spatially, 256x256 to 60x5 or 15x3)
• Total downsampling and cuts: ~2TB to ~6GB

• Random machine configurations (~20), varied:
• B at cathode, 7 values (500-2000G)
• B at mirror: 6 values (250-1500G)
• B at midplane: 6 values (250-1500G)
• Gas puffing fueling rate: 7 values
• Discharge power: 9 values

• Parameters chosen using latin hypercube sampling
• Guarantees every sampling bin gets at least one 

sample (unike random uniform sampling)

Example training discharge

• Perform traditional analysis of probe data to calculate particle flux 
and diffusivity and add to the dataset 

• Find a lightweight but performant network architecture
• Process and include additional diagnostics in the dataset
• Determine the most informative diagnostics for predicting profiles
• Train an EBM to predict profiles and to find the machine 

configuration necessary for a given profile (the inverse problem)
• Optimize LAPD mirror configurations given an objective function

Neural network predictions

Model performance is good, but
• there’s much room for improvement in 

the gradient/edge regions
• generalization performance needs work

Goal: predict isat profiles with NNs
• Use a feedforward NN:

• as a benchmark for a generative model
• to determine compact architectures
• to find most informative diagnostics 

• Trained standard feed-forward NNs
• Inputs: all diagnostics, MSI, and probe 

position
• Outputs: isat time series

• Testing different architectures because:
• each have particular inductive biases
• EBMs are difficult to train, want to figure 

out good architectures beforehand
• Architectures trained: dense NNs and 

convolutional NNs (CNNs) so far — CNNs 
are smaller for similar performance

Next steps for this prediction problem:
• Try out recurrent NNs
• Want to figure out which diagnostics are 

most important → remove signals, see 
how performance degrades
• Remove all MSI data (only FFC)
• Remove only axial diagnostics 
• Fast framing camera downsample size

• Higher resolution seems to perform 
better, but needs further investigation

• Include diagnostics left out by this 
analysis (e.g., 288 Ghz interferometer, 
Thomson scattering, diamagnetic loop)

Probe diagnostics
• Langmuir sweeps – Te
• Triple probe

• isat, Te, Vf
• Flux probe 

• isat, Vf x2
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p(x) ∼ e−βE(x)Energy based models (EBMs)
define probability as:

A neural network assigns 
energy value to input data:

• Sample from models: 
Langevin dynamics
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ẍ = �rE(x) +
p

TN (0, 1)

Gaussian processEnergy surface

• Profiles and time series are harder to 
match in the gradient region
• Small changes in position lead to large 

changes in isat
• Large fluctuation amplitudes

• Improving performance in gradient/edge:
• may need higher resolution (in FFC)
• use a more expressive model 
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