Phil Travis

phil@physicistphil.com · Los Angeles, CA

EDUCATION

- Ph.D., plasma physics, 2025, University of California, Los Angeles
- Master of Science, Physics, 2018, University of California, Los Angeles
- Bachelor of Science, Physics, 2017, University of Illinois at Urbana-Champaign

CORE COMPETENCIES AND EXPERIENCE

Machine learning Deep and generative modeling From diagnostics to deployment Data handling Fusion physics Turbulence and transport Mirror machines and tokamaks Broad understanding of the field Computing Generally competent; power user Data handling 29 million discharges, multiple TBs Plasma diagnostics Probes and fundamental fusion diagnostics

PROJECTS

Optimization of ICF simulations using JAX

2025 - present

- Goals: learn the fundamentals of simulating plasmas; optimize ICF plasma instabilities
- Utilizing the ADEPT differentiable simulation framework
- Optimized beam parameters to reduce growth rate of the two-stream instability

Evidence of interchange modes in LAPD mirrors

2024 - 2025

- Goal: destabilize the curvature-induced interchange instability in the LAPD
- Achieved β ~ 1% an order of magnitude higher than previous LAPD mirror studies
- Analysis included Thomson scattering, Langmuir probes, a fast framing camera, and other diagnostics
- Observed low-m, low-frequency, high-amplitude mode consistent with the interchange instability

Reconstructing diagnostic signals using (generative) energy-based models

2021 - 2025

- Goal: learn correlations between diagnostics and machine state information via generative modeling
- Trained (generative) energy-based models (EBMs) using transformer-like inputs heads and CNNs
- Reconstructed missing diagnostics from the learned distribution via conditional sampling

Inferring trends in the LAPD mirrors using machine learning

2024 - 2025

- Goal: infer trends from a model trained on randomly varied LAPD actuator states
- Built neural network model to predict ion saturation current given a mirror machine actuator state
- Inferred trends in discharge current, mirror configurations, and gas puffing durations
- Used model to infer state required to optimize axial variation in a mirror cell
- Made public the code, models, data, poster, and writeup: doi:10.5281/zenodo.15007853

Upgrading LAPD diagnostic pipelines for machine learning applications

- Goal: collect as much data as possible from every shot on the Large Plasma Device for ML purposes
- Constructed a new LabVIEW- and python-based system that ties into the existing acquisition system
- Aggregated machine state information and auxiliary diagnostics for every discharge
- Recorded over 29 million shots largest known magnetized plasma dataset by shot count

Gradient-based optimization of a 0d mirror machine reactor

2022 - 2023

In collaboration with WHAM

Funder: ORFEAS competition

- Goal: develop and optimize a 0D mirror machine reactor model for minimal cost
- Built a 0d mirror machine model in SymPy and JAX
- Optimized estimated dollar cost, Q, and other cost functions with respect to particular machine and physics parameters, including stability constraints
- Demonstrated superiority of the tandem mirror approach over simple mirrors

Automating Langmuir sweep analysis using neural networks

2019 - 2020

- Goal: automate the analysis of noisy or otherwise non-ideal Langmuir probe sweeps
- Aggregated Langmuir sweep data and built an NN-, attention-based fitting routine in TensorFlow
- Built a surrogate model for the theoretical Langmuir sweep curve
- Fitting routine was robust to strong drift wave turbulence

Study of turbulence and transport in magnetic mirror geometries in the LAPD

2017 - 2019

- Goal: explore and determine the effect of a magnetic mirror geometry on the turbulence spectrum
- Analyzed ion saturation current, floating potential, and magnetic fluctuation probe measurements using cross-correlation techniques in Python
- Saw no mirror-driven instabilities, but observed modification of the turbulence spectrum and decreased cross-field particle flux with increased mirror ratio

ADVISING

Juri Alhuthali

Advised four UCLA physics undergraduates:

Advised four GOLA physics dilacigraduates.

Summer 2024 - Fall 2024

- Supervised Bayesian inference of swept Langmuir probe traces
- Used PyStan (a Bayesian inference package) and Pyro (a probabilistic computing package)

• Jessica Gonzalez

Summer 2023 - Summer 2024

- Supervised analysis of time-series monochromator signals of three Helium neutral lines
- Analyzed time traces using ColRadPy, a collisional-radiative solver
- Compared results with measurements from the LAPD Thomson scattering system

Tyler Hadsell

Spring 2022 - Spring 2024

- Supervised python-based analysis of Phantom v7.3 fast framing camera footage of the LAPD
- Supervised development of clustering routines to quantify dataset diversity and extract trends

Kian Orr

Summer 2021 - Spring 2022

- Supervised construction and deployment of software to control and read from an Ocean Insight HR4000 spectrometer
- Integrated spectra into the existing machine state and auxiliary diagnostics system
- Advised analysis of recorded spectral lines using ColRadPy to deduce electron temperature and densities in the LAPD

PUBLICATIONS

- **P. Travis**, J. Bortnik, T. Carter, "Machine-learned trends in mirror configurations in the Large Plasma Device" *Physics of Plasmas* 32, 082106 (2025). doi:10.1063/5.0270755
- **P. Travis**, T. Carter, "Turbulence and transport in mirror geometries in the Large Plasma Device" *Journal of Plasma Physics* 91 (2025). doi:10.1017/S0022377825000029
- Qian, Yuchen, et al. "Design of the Lanthanum hexaboride based plasma source for the large plasma device at UCLA." *Review of Scientific Instruments* 94, 085104 (2023). doi:10.1063/5.0152216

SELECTED PRESENTATIONS (see <u>physicistphil.com/presentations</u> for full list)

-	Generative, energy-based models for diagnostic reconstruction and analysis Phil Travis , Troy Carter — APS Division of Plasma Physics 2025, Long Beach, CA	Poster
-	An open dataset from the Large Plasma Device for machine learning and profile prediction Phil Travis , Troy Carter — APS Division of Plasma Physics 2024, Atlanta, GA	Poster
-	Study of turbulence and transport in magnetic mirror geometries in the LAPD Phil Travis and Troy Carter — Transport Task Force 2018, San Diego, CA	Poster
-	Dependence of edge profiles and stability on neutral beam power in NSTX P. Travis , G. Canal, T. Osborne, R. Maingi, S. Sabbagh, and the NSTX-U team — APS Division Plasma Physics 2016, San Jose, CA	Poster of

SKILLS

Computing

- Proficient in Python, C/C++, LabView, LaTeX
- Experience with CUDA, OpenMP, MPI
- Experience with MATLAB/Octave
- Proficient in PyTorch, TensorFlow, JAX
- Proficient in Linux (Ubuntu and Debian)
- Proficient in handling TB-scale data aggregation and storage (sockets/networking, HDF5, binary data)

Diagnostics and analysis

- Proficient in analysis of: magnetic flux (bdot), electrostatic (Langmuir) probes, non-collective Thomson scattering, heterodyne interferometry
- Experience with analyzing spectroscopic data and visible-light diagnostics
- Proficient in using cross-correlation and spectral techniques

Simulation

- Experience with Vlasov and fluid solvers
- Experience optimizing through simulators

Machine learning and statistics

- Proficient in using neural networks, generative modeling, gradient-based optimization
- Experience with Bayesian inference, MCMC methods, uncertainty quantification
- Experience with classical ML techniques (regression forests, clustering, support vector machines, gaussian processes)

Laboratory techniques

- Proficient in using general lab electronics (oscilloscopes, function generators, etc...)
- Experience with operating a 300 mJ laser and supporting equipment
- Proficient in using probe biasing and signal conditioning equipment
- Proficient in interfacing with general lab hardware and DAQ devices