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ABSTRACT OF THE DISSERTATION

Study of turbulence and transport in and optimization of

mirror configurations in the Large Plasma Device

by

Philip Travis

Doctor of Philosophy in Physics

University of California, Los Angeles, 2025

Professor Troy A. Carter, Chair

The primary goal of this thesis is to work towards accelerating and automating fusion sci-

ence. The combination of the physical flexibility of mirror machines with the optimization and

information-exploitation potential of machine learning may be a potent one and is explored here.

Progress towards this overarching goal is accomplished by studying turbulence in a mirror machine,

optimizing mirror configurations using machine learning, and developing a highly extendable and

flexible model for correlating and interpreting diagnostic signals.

In the Large Plasma Device (LAPD) at UCLA, a study of turbulence and transport in mirror

configurations was undertaken. Using the flexible nature of the LAPD field configuration, several

different mirror ratios from M = 1 to M = 2.68 were studied. Langmuir and magnetic probes

were used to measure profiles of density, temperature, potential, and magnetic field. Particle flux

measurements were also taken. The goal of this work was to see the interaction of interchange

modes with drift waves, but no such interchange modes were observed likely because of the many

stabilization phenomena present. This fact, along with reduced cross-field particle flux, indicate

that a sufficiently cold edge of a simple mirror may have less cross-field transport than one would

ii



expect.

For the purposes of machine learning, a partially-randomized dataset was collected in the LAPD

mirror configurations. The goal was to maximize the diversity of data to cover the largest portion of

machine operation space as possible. Using this collected dataset, neural network (NN) ensembles

with uncertainty quantification were trained to predict time-averaged ion saturation current (Isat

— proportional to density and the square root of electron temperature) at any position within the

dataset domain. This model was then used to optimize the device for strong, intermediate, and weak

axial variation of Isat. In addition, this model was used to infer trends in the effect on Isat of LAPD

controls. This model and optimization were validated on followup experiments, yielding qualitative

and, at times, quantitative, agreement. This investigation demonstrated that, using ML techniques,

insights can be extracted from experiments and magnetized plasmas can be globally optimized. The

primary goals of this work were to provide an example of a solid, validated machine learning study

and demonstrate how ML can be useful in understanding operating plasma devices.

Using this same randomized dataset, a generative model was trained to learn a probability

distribution. In particular, energy-based models (EBMs) provide a powerful and flexible way of

learning relationships in data by constructing an energy surface. In this work, a CNN- and attention-

based multimodal EBM was trained on time series and single-dimensional data. This EBM learned

all distributional modes of the data but with some differences in probability mass. Via conditional

sampling of the model using a novel, auxiliary energy function technique, diagnostic reconstruction

is demonstrated. In addition, the inclusion of additional diagnostics improved reconstruction error

and generation quality, showing that even uncalibrated, unanalyzed diagnostics can provide useful

information. Fundamentally, this work demonstrated the flexibility and efficacy of EBM-based

generative modeling of laboratory plasma data, and demonstrated practical use of EBMs in the

physical sciences.
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CHAPTER 1

Introduction

Nuclear fusion is potentially a fantastic long-term energy source. On Earth, the fuel is abundant,

the waste manageable, and is otherwise clean. The most easily accessible fusion reaction for us

is the fusion of two heavy hydrogen isotopes: deuterium and tritium, with one and two neutrons,

respectively. This reaction produces a neutron with 14.1 MeV of energy and a helium-4 nucleus

with 3.5 MeV. In terms of mass of the reactants, the energy density of fusion is roughly seven

orders of magnitude higher than hydrocarbon fuels. Reaching the conditions for this fusion reaction

requires of the plasma sufficiently high density n, temperature T , and confinement time τ . Since

the inception of the controlled fusion program, progress has been made towards improving these

parameters [166], but much work is left to be done to put the power of the sun in the palm of our

hands.

1.1 Nuclear fusion via magnetic confinement

The current dominant configuration for fusion plasmas is the donut-shaped tokamak [82]. This

device operates by first imposing a toroidal field with external magnets, like bending a solenoid

into a circle. Toroidal devices make intuitive sense: the magnetic field can only confine plasmas

perpendicular to the field via the Lorentz force F = q(E + v×B), so the third axis is wrapped in

a circle so that the magnetic field lines are closed. A current is induced in this toroidal direction

to create an orthogonal poloidal field component, a net helical field, to cancel out particle drifts.

Currently, tokamaks are in the lead for plasma performance in magnetic confinement fusion [166].
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Tokamaks, however, have two major drawbacks: the large toroidal current and the complicated

geometry. At minimum, a breakeven reactor requires many millions of Amperes of circulating

current [29]. This current is a source of free energy that, in situations called disruptions, can be

dumped into an electron beam that causes catastrophic damage to the wall as well as structural

damage via induced currents. These disruptions are thought by some to be a showstopper for the

tokamak program. These disruptions can be avoided altogether by instead building a toroidal device

that has a (mostly) externally set field. Such a device is called a stellarator [18]. These stellarators

are, structurally speaking, even more complicated than a tokamak. The requirement for purely

externally defined fields and sufficiently good confinement properties leads to very complicated coil

geometries that are difficult and expensive to assemble. Devices that are difficult and expensive

to build will not be economically competitive – costs are very important to the viability of fusion

reactors [140]. Geometrically simple linear devices, such as mirror machines, may be the best path

forward despite intrinsically worse confinement.

The magnetic mirror approach to fusion [124] operates on the principle of conservation of

the magnetic moment µ = W⊥
B . When a particle enters a region of higher field, W⊥ increases

by conservation of µ . Given sufficiently high W⊥ relative to W∥, by conservation of energy

(W⊥+W∥ = constant) W∥ must decrease and, if the parallel energy is sufficiently low, then particle

stops and reverse direction. Thus, some particle trapping can be achieved by creating a solenoid

with high-field magnets at each end. Some particles can escape, and if the loss rate is rapid enough,

deplete a portion of the velocity space leading to a “loss cone” distribution which can then drive

many severe instabilities. A schematic of this loss cone can be seen in fig. 1.1. The primary focus of

magnetic mirror research has been on plugging this hole in the distribution function and mitigating

the interchange instability [124].
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Figure 1.1: Schematic of the velocity distribution loss cone in mirrors (for ions). Ions are lost for all

perpendicular velocities below a certain threshold because of the ambipolar potential created by

fast-escaping electrons.

1.2 Confinement degradation from instabilities and turbulence

All fusion plasmas are contained within a vacuum vessel and are hot relative to the vessel wall, which

implies the existence of temperature and density (and thus pressure) gradients. These gradients

provide free energy to drive instabilities, which in some cases cascade to smaller length scales and

dissipate. This process is turbulence, and it occurs inside every fusion-relevant plasma that we

know of. These turbulent eddies can be large and are the fundamental limit on cross-field transport

for fusion reactors. Effort must be made to study and characterize this turbulence, and if possible,

suppress it.

Many instabilities contribute to transport and turbulence in fusion devices. Instabilities that

impact mirror machines will be briefly reviewed here. A detailed look at instabilities present in the

LAPD can be found in chapters 2 and 3.

Drift waves are a common density gradient-driven instability, driven unstable by dissipation
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[68, 74, 154]. These drift waves are commonly seen in magnetic confinement fusion devices given

the minimal requirements of a density gradient and magnetic field. Other drift-like modes also

exist, such as ion temperature gradient modes (ITG), trapped electron modes (TEM), and electron

temperature gradient modes (ETG), summarized in Doyle 2007 [120].

Mirror machines have been primarily concerned with stabilization of flute-like interchange

modes. These modes are driven by pressure gradients aligned with the magnetic field curvature

vector [124, 50, 165]. These modes have been stabilized in a variety of ways, such as line-tying [52],

using a good-curvature expander tank [134, 77], or non-axisymmetric magnetic field configurations

[108]. Ballooning modes [44] may also be driven unstable in mirror machines, and are commonly

seen in tokamaks [148, 28].

Mirror machine research has also focused on velocity space instabilities driven by the loss cone

distribution. The drift-cyclotron loss cone instability (DCLC) [13, 49, 92] is the coupling of ion drift

waves to the ion cyclotron motion, driven by the density gradient and loss cone distribution. This

mode can be stabilized by filling the loss cone, typically with warm plasma, so it is not expected to

see this mode in highly collisional plasmas such as those produced in the LAPD. The Alfvén ion

cyclotron (AIC) instability is similar – Alfvén waves interact with ion cyclotron motion, scattering

the ions and degrading confinement [23].

1.2.1 Importance of this turbulence and transport study

As enumerated above, many instabilities may be present in a mirror machine, and understanding

how modes may couple and influence transport is critical to design and operation of fusion reactors.

Using the LAPD, we seek to understand turbulence and transport at edge-like conditions of mirror

machines, and attempt to observe the interaction of interchange modes with drift waves or other

instabilities. This study also highlights the ability for the LAPD to operate with mirror configurations,

which may be useful for future studies since mirrors are once again being considered for a fusion

reactor [46, 51, 53]. In addition, characterization of modes present on the LAPD would give a
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greater understanding in interpreting data in other LAPD studies. Distinguishing the modes present

could illuminate promising directions for further studies on LAPD turbulence and transport.

The magnetic field of the LAPD was configured to create several mirror ratios and lengths, with

a focus on primarily short mirror cases. These mirrors were diagnosed with Langmuir probes and

magnetic probes. Spectra from these diagnostics were analyzed to determine the modes present and

calculate cross-field particle flux. Additional data were collected to reconstruct the 2d structure of

the modes present using correlation techniques. Drift-Alfvén waves were observed at 12 kHz and up

with the peak having strong dependence on machine-averaged magnetic field, as expected. Lower

frequency modes could not be confidently identified, and could be a mixture of drift waves, rotational

interchange, a nonlinear instability, or the conducting wall mode. Particle flux measurements were

unexpected: an increased mirror ratio led to a decrease in the particle flux. Magnetic curvature has

a destabilizing effect, so an increased E×B particle flux was expected. Nevertheless the particle

diffusivity estimate was consistent with Bohm diffusion. The decrease in particle flux could be

explained in-part by the decreased gradient scale length caused by the larger plasma radius at

higher mirror ratios. No evidence for the interchange mode was observed, likely because of many

stabilization methods present.

Although the results are unexpected, they are promising when considering the cold edge of a

fusion reactor. If the edge is in contact with a conducting surface, it will likely be stable and not

contribute too greatly beyond typical Bohm (or turbulent) transport.

1.3 Accelerating research using machine learning

Machine learning, though a nascent field for quite some time, has exploded in popularity since the

advent of deep neural networks trained on GPUs [94]. Machine learning is effectively curve fitting,

though, as compute is becoming cheaper and GPUs more powerful, larger models can be trained

with greater capabilities. Fundamentally, machine learning, and in particular deep learning, scale

very well with data and dimensionality. Plasma devices and simulations are producing increasing
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amounts of data which can be exploited using these machine learning techniques.

Recently, machine learning techniques have become increasingly used in the plasma physics

and nuclear fusion community. One of the most common applications is building surrogate models

for expensive simulations. Surrogates train on simulation output and, once learned, provide a fast

way to predict in the domain covered by the training set. Surrogate modeling [149] has been applied

to turbulence and transport computations [107, 99, 54, 70], profile prediction [109], global tokamak

simulations [35], uncertainty quantification [168], and in inertial confinement fusion (ICF) [115, 7].

ICF in particular has had great success enhancing predictive capabilities by combining experimental

data and theoretical models using machine learning [58, 76, 65].

Reinforcement learning has been used for trajectory control on tokamaks [146, 144, 145],

notably on the TCV tokamak [32, 151] for exploring new magnetic configurations. Predicting

instabilities, particularly disruptions, has also been a major application of machine learning in the

field [130, 86, 117, 57, 110, 129, 132]. A comprehensive review of disruption prediction can be

seen in Vega et al. [158].

Profile prediction in tokamaks has also been performed using machine learning. Electron density,

temperature, and other quantities in tokamaks have been predicted [4, 36], and can be adaptable

using reservoir NNs [79]. Temporal evolution of parameters has been successfully modeled using

recurrent neural networks (RNNs)[24, 162, 146, 144].

Machine learning techniques can also be used to solve differential equations by parameterizing

the solution using a neural network. These “physics-informed neural networks” (PINNs) have also

been increasingly used in fusion [133, 8, 143].

A deeper review of machine learning with respect to profile prediction and generative modeling

can be found in chapters 5 and 6, respectively.
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1.3.1 Importance of these ML models

The study of plasmas is characterized by inconsistent experiments, incomplete and untrustworthy

diagnostics, and difficult theory. Machine learning provides a new tool to tackle these challenges.

As demonstrated in the referenced works above, machine learning can be used to great effect to

accelerate simulations, control plasmas, and make predictions. In order to successfully accomplish

these tasks, these models learn some structure (such as a lower-dimensional manifold) over the data,

but this structure is usually exploited only for the downstream task, such as predicting a plasma

parameter at some point in time or an actuator state. My goal is to make this structure explicit and

explorable; the model has likely learned relationships that can improve our understanding of fusion

plasmas. If a model learns relevant and useful relationships from data, then this information can be

exploited without requiring painstaking manual data analysis. Exploiting this information without

humans in the loop could dramatically accelerate the rate of progress in fusion science.

This work pushes the frontier of extracting insight from a plasma device using machine learning.

A diverse set of machine configurations were collected on the Large Plasma Device (LAPD)

by selecting machine settings via Latin hypercube sampling. This randomization of machine

configurations is a first for magnetized plasma research and yielded a set of 44 randomized dataruns

(67 dataruns in total) spanning a wide range of LAPD parameter space, totalling 132,000 discharges.

The diversity of this dataset is unique for plasma physics research: usually most machine parameters

are held constant and vary one or a few in a grid-like pattern, but in this work all parameters are

changed simultaneously.

Using a small neural network (around 200,000 parameters), time-averaged ion saturation current

(Isat) can be predicted at virtually any point in the LAPD given the machine state. Information

is extracted from this model by inferring trends: scanning along particular inputs and observing

how the predicted Isat changes. Trends inferred this way agree with intuition and arguments from

geometry, demonstrating that the model has accurately learned the underlying relationships. In

addition, this model is used to optimize the axial variation of Isat in LAPD discharges. Axial
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variation in density and temperature is an important problem affecting many physics studies on

the LAPD; the ability to optimize the axial variation can alleviate this issue. Machine learning is

required to perform this trend inference and optimization of LAPD plasmas: the dimensionality

of the problem is too high for a conventional grid search. Fundamentally, this work demonstrates

the new capability of searching a high-dimensional space on a plasma device that would be very

difficult, if not impossible, to do without machine learning.

This work was extended to include additional diagnostics and time-series data, and was expanded

to generative modeling. An energy-based model (EBM) was trained on these additional diagnostics,

learning a joint distribution over the diagnostics and machine parameters. This model can be used

to reconstruct diagnostic signals given any combination of inputs. In this case the interferometer

signal was conditionally sampled on only machine parameters and compared the case where

additional diagnostic signals were included. Additional unanalyzed and uncalibrated signals

improved reconstruction performance, indicating that other diagnostics contain useful information

even in a primitive form. This diagnostic reconstruction using generative modeling is a first for

plasma science, and this reconstruction was performed by modifying the energy function in a novel

way. In addition, the energy surface was directly examined by scanning along the probe x-axis

dimension, demonstrating a novel ability to find symmetries in the data from the trained model.

These EBMs provide a very flexible way of representing the data, and open up many possibilities

for combining with additional datasets and simulations.

Fundamentally, the machine learning techniques demonstrated in this thesis provide a pathway

towards automating fusion science, and demonstrates a new way of representing and analyzing data

over a wide range of experimental conditions.

1.4 Outline of the dissertation

Chapter 2 describes the Large Plasma Device, the configuration of the machine, and the diagnostics

used in this thesis. It also provides background on some relevant instabilities and a very brief
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introduction to neural networks.

Chapter 3 details a study of mirror turbulence and transport using the older barium oxide cathode.

Multiple mirror ratios and lengths were analyzed, with the conclusion being that cross-field particle

flux reduced at higher mirror ratios, and no evidence of the interchange instability was seen.

Chapter 4 describes the process of collecting data from randomly-set LAPD configurations,

the diagnostics collected, and the biases inherent in the data. The dataset collected here is used in

the two subsequent chapters. The chapter also covers the data cleaning process for some of the

diagnostics.

Chapter 5 is a thorough machine learning study on predicting ion saturation current – Isat –

in LAPD mirrors using neural networks. This is possibly the first time a global optimization

like this has been performed in magnetized plasma device. In addition, trends were inferred by

scanning along various combinations of machine inputs. The important features of this work are

the validation of model predictions and thorough uncertainty quantification. Fundamentally, this is

a demonstration that machine learning can be used to extract insights from data in a complicated,

multivariate physical system.

Chapter 6 takes a different angle on machine learning than what was done in chapter 5. Instead of

predicting a single output given machine inputs, we instead learn a probability distribution over the

data using an energy-based model. Using this model, we can reconstruct any arbitrary combination

of diagnostics, machine settings, or anything in the input space – including hallucinating discharges

altogether. The flexibility of the learned energy function is demonstrated. This flexibility provides a

way to combine theory and other experiments to improve predictions.

Appendix A describes a small 0d reactor optimization project in collaboration with Kunal

Sanwalka, based on a spreadsheet by Cary Forest. This project was undertaken to learn how to use

Jax and SymPy, and also gain some intuition on mirror-based fusion reactors.
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CHAPTER 2

Background

2.1 The Large Plasma Device at UCLA

The Large Plasma Device (LAPD)[60, 126] is a 26 meter long linear plasma device located at the

Basic Plasma Science Facility (BaPSF) at the University of California, Los Angeles. This device

is built for basic plasma science and can create quiescent, and long-lived, i.e., longer than the

timescales of interest, plasmas. The LAPD produces up to 18 m long, 1 m diameter plasmas. A

cartoon of the LAPD and the canonical coordinate system can be seen in fig. 2.1.

2.1.1 Plasma source

Typically, plasmas are produced using a hot cathode and anode at the south end of the device. This

cathode was originally barium oxide (BaO)-plated nickel [60], but was recently upgraded to a

segmented lanthanum hexaboride (LaB6) source [126]. The BaO cathode was 72 cm in diameter,

which mapped to 60 cm in a flat magnetic field configuration. A 72 cm diameter, 50% transparent

molybdenum anode was used to accelerate electrons from the cathode down the length of the

machine. This BaO source could reach densities of 4× 1012 cm−3 and temperatures up to 8 eV.

The LaB6 cathode is 35 cm across and electrons are accelerated through a 64.4 cm diameter, 66%

transparent molybdenum anode. The LaB6 cathode can form hotter, denser plasmas with densities

up to 3×1013 cm−3 and temperatures up to 20 eV, though typical operation yields temperatures

around 5 eV, and is also more robust to accidental atmospheric exposure. The LaB6 cathode is

heated to ≈ 1700 ◦C using a ≈2 kA heater. Both of these cathodes were used in the work presented
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Figure 2.1: Top: picture from the LAPD taken from the south end of the device, next to the cathode

and anode region. Bottom: picture taken in the middle section closer to the north end. Right:

cartoon of the LAPD with the coordinate system used.

11



here. An insertable, smaller (20 cm diameter) LaB6 source also exists at the north end of the

machine, but is not used in this work. An interior shot of the LAPD can be seen in fig. 2.2.

The voltage applied across the cathode and anode is supplied by a 4.2 Farad capacitor bank

switched by group of IGBTs. The discharge voltage is configurable up to 180V before triggering

the over-voltage protection, though the capacitors are rated up to 200V. Current through the cathode

can exceed 10 kA. Discharges can last as long as 70 ms, though a typical duration is around 15-20

ms. Discharge duration, power, and repetition rate are governed by the size of the capacitor bank

and the charging power supply. The discharge repetition rate is configurable between 0.1 and 1 Hz.

2.1.2 Magnetic field

The LAPD has 13 independently-configurable magnet power supplies to shape the geometry of the

axial magnetic field. Two of the supplies control the source region field, one controls the north end

field where the smaller LaB6 source resides, and the remaining 10 supplies control the field of the

main plasma column. The source field can reach up to 8 kG and the main plasma column field up to

1.6 kG. A 1 kG field leads to an ion gyroradius of 2 mm at 1 eV, and an electron gyroradius of 50

µm at 5 eV, so these plasmas are highly magnetized. The source field is set manually on the power

supplies themselves, but the middle 10 fields can be programmed using the LabView housekeeping

system.

2.1.3 Gas fueling

There are two main ways of providing the neutral gas necessary for producing plasmas: the static

fill system and gas puffing. The static fill system utilizes mass flow controllers to fill the chamber

to the desired pressure, usually between 10−5 and 5×10−4 Torr. The LAPD can be filled with a

variety of (nonreactive) gases, helium being the most common, followed by hydrogen and argon.

The gas puff system utilizes piezo valves to puff gas into the chamber halfway between the cathode

and anode. Gas puff duration and valve voltage can be set, which influence the total amount of
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Figure 2.2: The interior of the LAPD taken during a discharge from the end of the machine. The

hot LaB6 cathode can be seen at the far end. Inside the plasma chamber are, from left to right, a

carbon iris (used in Josh Larson’s experiments) for controlling the width of the plasma from the

smaller north-end source, an electric dipole probe, and the traveling wave antenna. The pink glow is

the plasma formed by the far, main LaB6 source.
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gas puffed and thus plasma density. Plasma breakdown using gas puffing is very reliable. Without

fueling the LAPD has a base pressure of 5 ×10−7 Torr. The pressure is constantly monitored by the

housekeeping system.

2.2 Data acquisition

Probes can sample virtually any point in this plasma through unique ball valves placed every ≈32

cm along the length of the device, enabling the collection of time series data with high spatial

resolution. Four probe drives can simultaneously be used to move probes in the x-y plane. An x-y-z

probe drive is also available for collecting volumetric data. There are also 3 permanently attached

probe drives mounted 45◦ up from the -x axis on which Langmuir probes are currently mounted.

These drives have a limited motion compared to the standard x-y probe drives used during dataruns

and the signals are digitized on 8-bit oscilloscopes. Typically many shots are taken at one position

to obtain good sample statistics.

Primarily, probe data acquisition is handled through the main data acquisition system, simply

referred to as the “DAQ”. The DAQ consists of SIS 3302 digitizers (theoretically 32 channels total)

capable of sampling signals between ±2.5 V at 100 MHz at 16 bits. Typically sample averages are

taken (16 samples for my data) to reduce data transfer and file size. The DAQ is set up through a

LabView-based control system.

This LabView system manages “dataruns” which are a series of discharges with a particular

LAPD configuration (including the DAQ, probe motion control, and other device configurations

such as function generators). Another LabView system controls the probe movements. All these

devices are enabled and commands issued in a particular order via the run sequencer.

Another LabView system manages the machine state information (MSI). This system collects

information on the discharge (current, voltage), auxiliary diagnostic signals (and formerly interfer-

ometer traces), gas total pressure and RGA pressures. The time series diagnostics are read by a

National Instruments PCIe-6346 data acquisition card which samples with 16 bits over 8 analog
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inputs at 500 kS/s per input. The MSI also collects information on the state of the magnetic field

and cathode heater from the housekeeping system. An auxiliary python system can also be used to

collate diagnostics from multiple sources, including the machine state information.

2.3 Diagnostics

LAPD can field many different diagnostics and other equipment through the ball-valve ports as well

as much larger box-shaped ports. The most common and useful diagnostics used are discussed.

2.3.1 Langmuir probes: Isat, sweeps, triple probes

Langmuir probes (LPs) are a workhorse of diagnostics in low temperature plasmas, such as the

LAPD, and are also used at the (lower temperature) edge of fusion devices. These probes can be

used to measure density, temperature, and potential of the plasma. LPs are essentially a conductive

tip (typically tungsten in our case) inserted into the plasma. Three different types of these LPs can

be seen in fig. 2.3.

The LP can be biased to measure different portions of the current-voltage relationship. Common

biasing schemes are: applying a strong negative bias, sweeping the bias along a set range, free-

floating the tip, and biasing another tip via the ion saturation current from another tip. The I-V

relationship of a LP and the quantities deduced from it can be seen in fig. 2.4 which will be detailed

below.

2.3.1.1 Ion saturation current (Isat)

When the LP tip is biased negatively, the probe tips rejects all electrons and only collect ions, and is

thus called the ion saturation current. This current, derived from the Bohm sheath criterion for cold

ions (Ti≪ Te), is:

Isat =−e−1/2Sqini

√
Te

mi
(2.1)
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Figure 2.3: Three different types of Langmuir probes used in the LAPD: flat protruding tips (top

left), flat, flush tips (bottom left), and cylindrical tips (right). Based on measurements using a

camera and macro lens, probe areas are often different from what is assumed.
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bottom (with Isat subtracted). The log-scaled version is typically used for fitting the temperature(s).

Useful points on the curve are labeled.
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where S is the effective area, qi is the charge of the ion, and ni is the ion density, Te the electron

temperature, and mi the ion mass. For a probe tip area of 1 mm2, a current of 1 mA corresponds to

ne ≈ 1-2×1012 cm−3 for a Te from 4 to 1 eV. The Isat on the I-V curve can be seen on the left in

the top plot of fig. 2.4. A bias that is too negative can cause arcing among tips on the same probe

shaft. A typical bias is around −60 V.

2.3.1.2 Floating potential (Vf )

The floating potential (Vf ) is the voltage where the probe tip has zero net current, often accomplished

by placing a large-valued resistor near the probe tip. This Vf is useful for measuring electrostatic

fluctuations, and can also be used as a proxy for plasma potential Vp if the electron temperature Te

is known via the relationship

Vf =Vp−
1
2

Te ln
(

2mi

πme

)
(2.2)

In addition, two vertically-arranged Vf tips can be used to approximately measure the local electric

field by dividing the potential difference by the distance between the two probes: E = (Vf ,top−

Vf ,bottom)/∆x, where ∆x is the displacement between the probes. This electric field is useful for

calculating the local E×B particle flux.

2.3.1.3 Sweeps for Te

Sweeping the bias applied to a LP tip (within a reasonable range) yields the exponential portion of

I-V curve, seen at the top of fig. 2.4. Below the plasma potential, the ion contribution to the current

is Isat (eq. 2.1). The electron contribution is (assuming a Maxwellian):

Ie(VB) = Sqene

√
Te

2πme
exp

(−qe(Vp−VB))

Te
(2.3)

where qe is the electron (elementary) charge, ne the electron density, me the electron mass, and VB

the applied bias.

Electron temperature can be determined by fitting the exponential portion, which is typically
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done using the Isat-subtracted log-scaled plot seen in the bottom of fig. 2.4. The electron temperature

is then the reciprocal of the fitted slope, in this case 4.5 eV. In the LAPD, given the electron beam

used to break down the plasma, the electron distribution can have a hot tail which can be fit with

a separate curve, which yields 30.9 eV in this case. The electron saturation current region – the

portion of the sweep around VB ≈Vp and higher – can be also be fit. The intersection of this line

and the temperature fit line is typically considered to occur at the plasma potential Vp.

Plasma potential is useful for calculating the azimuthal velocity profile. The radial electric field

can be calculated using a finite differences along a radius, and using the background electric field,

the azimuthal E×B velocity can be calculated. From this the shearing rate can also be calculated.

2.3.1.4 Triple probe Te measurements

Time-resolved Te measurements can be obtained by measuring the difference between a probe

tip biased by the Isat from another probe, called V3 here, and the floating potential. This process

effectively measures Te using three points on the LP I-V curve. These three points (hence, triple

probe) can be seen in the top plot of fig. 2.4. At Vf , the net current is zero:

0 = Sqene

√
Te

2πme
exp

(−qe(Vp−Vf ))

Te
+ Isat (2.4)

At V3, the current is −Isat:

−Isat = Sqene

√
Te

2πme
exp

(−qe(Vp−V3))

Te
+ Isat (2.5)

(note that Isat is a negative quantity). Combining these two equations and, through some algebra,

one obtains Te as a function of Vf and V3:

Te =
e(V3−Vf )

ln(2)
(2.6)

Given the sensitivity to fluctuations, sweeps are typically more reliable than these triple probe Te

measurements, but they can be relatively accurate. In this case, using the three points from fig. 2.4

yields Te = 4.48 eV which is within measurement error of the swept measurement of 4.54 eV. Triple

19



Figure 2.5: Ceramic cap of a Bdot probe which is inserted into the LAPD to measure magnetic

fluctuations

probe measurements require much less post-processing effort than swept measurements because of

the difficulty of automating sweep fits.

2.3.2 Magnetic flux (Bdot) probes

Magnetic measurements are performed using magnetic flux probes, typically called “Bdots”. Using

Faraday’s law, a changing magnetic field induces an EMF: V =−Aeff
dB
dt , where Aeff is the effective

area of the probe which depends on the area of the loop(s) and the number of turns. These Bdots

are formed from three orthogonal loops to capture magnetic fluctuations along all axes. These loops

are differentially wound and amplified so that electrostatic effects are removed. The wire is coiled

on a ceramic tube which is then covered with a ceramic cap, which can be seen in fig. 2.5. These

probes are calibrated using a Helmholtz coil to measure the spectral response and crosstalk using

a network analyzer. For all the signals used in this work, the response of the probe is linear (and

remains linear until well into the ∼MHz regime). The construction, calibration, and operation of

these probes is covered by Everson et al. [47].

Converting these Bdot signals, after calibration, simply requires integrating dB(t)
dt over time,
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which is easily accomplished in the frequency domain and avoids accumulating errors. Integrating

over t in the frequency domain simply requires dividing by −iω:

∫
Ḃ(t)dt =

∫
∑
ω

bωe−iωtdt = ∑
ω

bω

−iω
e−iωt (2.7)

where ∑ω bωe−iωt is the Fourier decomposition of Ḃ(t)

2.3.3 The 288 GHz heterodyne interferometer

The LAPD is equipped with two 288 GHz heterodyne interferometers which measure line-integrated

density. These interferometers function by applying a voltage shift to the source of the 288 GHz

signal (96 GHz, tripled) using a sawtooth waveform at 750 kHz, leading frequency changes in the

range of tens of MHz. Density fluctuations measurable by the interferometer occur much slower

than this 750 kHz sweep frequency. When this wave is launched into the LAPD and returned,

this 750 KHz wave is phase-shifted relative to a 750 kHz reference caused by both the free-space

propagation time and the plasma-induced path length increase. A higher-density plasma leads to an

increased path length, which leads to a larger observed phase shift. This phase shift can then be

unwrapped to obtain a density, given some calibration factor. The reference and detector signals

are recorded by an oscilloscope, which can be read from LabView (as part of the MSI system) or

python, or written to a file.

2.3.4 Thomson scattering

Thomson scattering is the gold standard of temperature measurements. In the LAPD, the Thomson

scattering has been implemented in the non-collective regime using a 532 nm, 460 mJ Nd:YAG laser

to measure Te and ne [62]. Thomson scattering is the process of electrons scattering and Doppler

shifting incident light, where the Doppler shift is caused by the electron thermal motion. This

scattered light is then collected by a spectrometer where the Doppler shift is directly measured. The

density can also be measured by counting the detected photons after absolute calibration of the
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entire optical system, including scanning of the fiber coupling optics to maximize signal. Between

shots, background spectra are taken and subtracted from the signal to reduce the influence of optical

imperfections and spurious light. A notch filter is also used to block reflections from the 532 nm

laser.

Analysis is fairly straightforward: the spectrum can be fit assuming a Gaussian distribution if the

plasma distribution is Maxwellian. The temperature is determined by the width of the distribution:

Te = 0.4513 ·∆λ 2
1/e, where λ1/e is the half width where the spectrum reduces by 1/e [62]. The

density can be calculated by integrating this fit distribution, but without a recent and accurate

absolute calibration this value is not reliable and should not be used.

The Thomson scattering system benefits from higher density (above 1013 cm−3) and lower

temperatures, otherwise many shots (a few thousand) may be required to get a spectrum with a

desirable fitting accuracy. Presently, this system measures temperature on-axis at port 32 at a single

point in time (span of 4 ns) in the plasma. The measurement volume can be moved to elsewhere

in the device with great effort. Coincidentally, a Helium ion line (7→ 4 transition) at 541 nm

is occasionally visible on the spectrum, but the resolution of the spectrometer (0.28 nm) is not

sufficient to calculate a thermal Doppler shift for reasonable ion temperatures, but it could provide

an upper bound.

2.3.5 Fast framing camera

The facility currently has a Phantom v7.3 fast framing camera. At 800 by 600 resolution, it can

record at 6,688 frames per second, but can record at over 35,000 frames per second at a 256 by 256

resolution. The camera sensor is 14 bit monochrome and capable of resetting pixels and reacquiring

light on event of sensor saturation (the “extreme dynamic range” feature). Although this footage is

not analyzed in a quantitative way, it is nonetheless useful for building intuition on the structures

and dynamics in the device. The light collected by the camera has been shown to correlate fairly

well with Isat, at least in the plasma bulk (according to unpublished data by Daniel Guice).
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2.4 Potential instabilities in the LAPD

A brief overview of potential instabilities is given here. The applicability of and evidence for the

existence of these instabilities is further discussed in chapter 3.

2.4.1 Drift waves

Drift waves exist in any magnetized plasma that has a density gradient, and are driven unstable

in the presence of dissipation (such as finite resistivity) [154]. For this reason, these drift waves

are often called a “universal” wave or instability. A schematic of the wave can be seen in fig.

2.6. The mechanism behind the wave is as follows: assuming the plasma follows a Boltzman

relationship, that is δn/n≈ eδφ/T , a density perturbation results in a potential perturbation. This

resulting electric field creates an E×B force that push portions of the perturbation out and other

portions inward. These forces lead to a propagating wave. If there is dissipation in the electron

response, it leads to a phase shift ε such that the density and potential fluctuations are related by

δn/n≈ eδφ/T (1+ iε). This phase shift leads to a growing mode – an instability.

The currents created by the electron response can couple to an Alfvén wave, leading to drift-

Alfén waves which have been observed in the LAPD in the past [103, 159], and are discussed

further in chapter 3.

2.4.2 Curvature interchange

Curvature-induced interchange modes occur in the presence of a pressure gradient in line with the

curvature vector. A schematic of these modes can be seen in fig. 2.7. The curvature drift (and

in many cases, ∇B drift) lead to charge separation in the plasma. If there is a positive density

perturbation, there will be a large current. A nearby density depletion will have a similar current,

but at a lower level. On average, this leads to an electric field which is then reinforced by the

E×B force. This interchange instability was a major challenge for early mirrors, and resulted in
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non-axisymmetric configurations to stabilize the mode [124]. The large amplitude of the mode

would make it very obvious in a density fluctuation measurement. These modes are also called

“flute modes” in mirror machine literature.

2.4.3 Rotational interchange

Similar to drift and curvature-induced modes, the rotational interchange mode is caused by charge

separation resulting from the curvature force. Like the interchange mode, these can be flute modes,

but can also have n ̸= 0 and could couple to other instabilities as well [56].
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2.4.4 Nonlinear instability and conducting wall mode

Other instabilities may be present in the LAPD as well. Simulations and statistical comparison

with experiments suggest the presence of a nonlinear instability with the largest growth rate [55].

These modes are flute-like, but can three-wave couple to non-flute modes. This instability has not

been directly observed, but the statistics of fluctuations are consistent with experiment. Simulations

also suggest the possible presence of temperature gradient- and conducting wall-driven modes

(CWM) [55, 16]. This mode has not been directly observed on the LAPD, but nonetheless should

be considered when evaluating fluctuation spectra given the presence of strong gradients and at least

one conducting boundary.

2.5 Machine learning and neural networks

Fundamentally, neural networks (NNs) are a function that, given sufficient capacity, can represent

any function – this is the “universal approximation theorem”. Stated succinctly, NNs are flexible

curve fits. As we will see in this work, these curve fits can be very useful.

2.5.1 Fundamentals of neural networks

Neural networks are built one ‘layer’ at a time. A layer in an NN is a vector x⃗i multiplied by some

weight matrix W followed by a nonlinearity to get the activation xi+1:

x⃗i+1 = f (Wx⃗i) (2.8)

where x⃗i is the previous activation (or input). A bias b (a learnable offset) is often concatenated to

the input vector beforehand. The activation function f can be any nonlinearity. Typical choices for

f include the rectified linear unit – ReLU (zero when the input is less than zero, linear otherwise),

tanh, sigmoids, sigmoid linear unit (SiLU), and so on. ReLU, and a variant of which called Leaky

ReLU, are popular choices given the simplicity of computation.

Stacking these layers one after another leads to the ability to express very complex curves. The
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true innovation here is the ability to express very high dimensional curves which was otherwise

impossible until the advent of modern NN techniques, enabled by fast matrix multiplication hardware

(read: GPUs).

The weights of these layers are trained via gradient descent of some loss function L . The loss

is effectively the penalty for the network predicting the incorrect answer. A typical loss function for

regression tasks is the mean-squared error:

L =
1
M

M

∑
i=1

(xi−g(xi))
2 (2.9)

where g(x) is the output of the neural network and xi is a training example in a batch size M.

Training over a dataset is often done in batches to reduce the memory required and to introduce

stochasticity into the training process which can improve generalization.

Gradient descent is the process of modifying the NN weights by calculating the gradient of the

loss function with respect to those weights:

θ ← θ −∇θL (2.10)

Advanced purpose-built algorithms exist to do this gradient descent in a fast manner, the most

popular being Adaptive Moment Estimation, known as Adam [88].

2.5.2 Common layer types

In this work, we use three types of NN layers. First is the dense layer, also referred to as a “fully-

connected” layers or “multilayer perceptron” if the entire model uses dense layers. In this layer

every input is connected to every output. This fully-connected topology can lead to very large

parameter counts if these layers are repeatedly stacked with a large width.

Second: the convolutional layer, or convolutional neural network (CNN) [96]. This layer scans

along the input with a smaller NN. The input dimension of this layer is the “kernel size”, and the

different networks scanning across the input are the “filters”. These CNNs have been used to great

effect in image processing and time series analysis and are relatively parameter-efficient.
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Third: the attention layers. These layers have three inputs called the query, key, and value.

When these are all the same the mechanism is called “self-attention”. The query and key are

matrix-multiplied and converted to a probability distribution via a softmax function. This softmax

result is then applied to the value, yielding scaled dot product attention [157]:

Attention(Q,K,V ) = softmax
(

QKT
√

dk

)
V (2.11)

where dk is the dimension of the query and key. The result of this combination is mask that selects

important parts of the value vector. Stacking many of these layers, with multiple self-attention

mechanisms for the same input vectors, creates a “transformer” [157] which is the basis for the

recent advancements in large language models.

2.5.3 Generative models

Generative models are models that learn a joint probability distribution over the inputs X and outputs

Y , p(X ,Y ) instead of learning the conditional distribution p(y|X = x) which are “discriminative”

models. Models that produce a single point estimate are also considered to be discriminative. The

learned joint distribution can typically be sampled both unconditionally (generating realistic-looking

data) and conditionally to generate samples when given additional information. A brief overview of

the commonly used generative models in fusion will be given here. Common generative architectures

are variational autoencoders (VAEs), generative adversarial networks (GANs), diffusion models,

autoregressive models, and energy-based models (EBMs).

A VAE [89] is composed of an encoder network and a decoder network. The model is trained

by mapping the encoder output to a latent probability distribution. This probability distribution can

then be sampled by the decoder. The model is trained by minimizing the difference between the

data distribution and the sampled distribution (such as using the Kullback-Leibler divergence) and

also minimizing the reconstruction error.

A GAN [64] is composed of an explicit generator network that generates plausible samples, and

a discriminator network that distinguishes between generated samples and data. The generator is
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trained on how well it fools the discriminator, and the discriminator is trained on how well it can

discriminate between generated samples and real data. These two optimizations compete.

Diffusion models [71] differently from GANs and VAEs. The diffusion model functions by

iteratively adding noise to an image such that the image converges to a Gaussian. An NN is then

trained to invert this noising process, enabling sampling from a distribution from pure noise.

Autoregressive models, usually for time-series data or language modeling, predict the next item

in a sequence given an earlier (set of) items. This model is the main idea behind training of large

language models – so called “generative pretrained transformers”, or “GPT” [128].

Energy-based models parameterize the probability distribution via an energy function where

the probability is defined as p = exp(−E)/Z, where Z is the partition function. These are trained

by evaluating the negative log-likelihood of the probability distribution via contrastive divergence

[69, 135, 150]:

− log p(x|θ) = E(x|θ)− logZθ (2.12)

where θ are the parameters of the model. Taking the gradient with respect to model parameters

yields

−∂ log p(x|θ)
∂θ

=
∂E(x|θ)

∂θ

∣∣∣∣
x∼p
− ∂E(x|θ)

∂θ

∣∣∣∣
x∼q

(2.13)

where the terms on the right hand side are averaged over samples drawn from the data distribution

p and model distribution q, respectively. These are called the “positive” and “negative” samples,

respectively.
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CHAPTER 3

Turbulence and transport in mirror geometries in the Large

Plasma Device

In this chapter we study turbulence and cross-field particle transport in LAPD mirror configurations.

Mirror machines are once again rising in prominence as a candidate for commercial fusion reactors

with the advent of highly-funded commercial ventures and high-field high-temperature supercon-

ducting magnets [46, 51], so development of a functional understanding of cross-field transport in

mirrors is imperative. Using the LAPD, multiple mirror ratios from M = 1 to M = 2.68 and three

mirror-cell lengths from L = 3.51m to L = 10.86m were examined. Langmuir and magnetic probes

were used to measure profiles of density, temperature, potential, and magnetic field. The fluctuation-

driven Ẽ×B particle flux was calculated from these quantities. Two probe correlation techniques

were used to infer wavenumbers and two-dimensional structure. Cross-field particle flux and density

fluctuation power decreased with increased mirror ratio. Core density and temperatures remain

similar with mirror ratio, but radial line-integrated density increased. The physical expansion of the

plasma in the mirror cell by using a higher field in the source region may have led to reduced density

fluctuation power through the increased gradient scale length. This increased scale length reduced

the growth rate and saturation level of rotational interchange and drift-like instabilities. Despite

the introduction of magnetic curvature, no evidence of mirror driven instabilities — interchange,

velocity space, or otherwise — were observed. For curvature-induced interchange, many possible

stabilization mechanisms were present, suppressing the visibility of the instability. This chapter is

based on my 2025 publication in the Journal of Plasma Physics titled “Turbulence and transport in

mirror geometries in the Large Plasma Device” [3], with some additions and changes.
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3.1 Introduction

Historically, mirror research has prioritized the main issues with mirror confinement: stabilizing the

interchange instability, stabilizing velocity-space (loss-cone-driven) instabilities, and minimizing

axial electron heat losses. Nevertheless cross-field transport remains an important topic in magnetic-

confinement fusion reactor development, in both linear and toroidal geometries. Insight into

edge-relevant turbulence and its coupling to interchange and other mirror-driven instabilities,

performed in a basic plasma science device, may be useful for a mirror-based reactor. Although

not at fusion-relevant core temperatures or densities, the Large Plasma Device (LAPD) operates at

conditions similar to the edge of fusion devices and can provide insight into the physical processes

in that region. A characterization of edge fluctuations has been undertaken, with emphasis on

interpreting these fluctuations within the context of a mirror.

Non-classical cross-field particle transport is often caused by low-frequency, large-amplitude

fluctuations. These fluctuations are the result of various instabilities. One such process is the

“universal” drift instability, which appears in the presence of a density gradient and a dissipation

mechanism, such as resistivity. Drift wave turbulence and the effect on transport has been extensively

studied in the past [74, 154]. In the presence of sufficiently high rotation or sheared flow, rotational

interchange and the Kelvin-Helmholtz instabilities also contribute or couple to these fluctuations.

Various gradient-, rotation-, and shear-driven instabilities (and suppression of such) have been

studied previously in the LAPD experimentally [137, 138, 139] and in simulations using BOUT,

a 3d fluid turbulence code, and an eigenvalue solver [122]. The LAPD has a sufficiently high

spontaneous rotation rate that rotation-driven instabilities may be excited without artificial drive.

Simulations using BOUT++ [55] have also suggested that a rapidly growing nonlinear instability

may dominate over all other linear instabilities.

Imposing a magnetic mirror configuration introduces magnetic curvature. The alignment of

the curvature vector with a pressure gradient vector component causes the flute-like interchange

instability if no stabilization mechanism is present. This interchange mode could couple to finite k∥
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drift waves. The coupling of drift waves to curvature-induced interchange modes has been studied

in toroidal devices such as TORPEX [121, 48], where curvature was seen as the driving component

for the unstable drift-interchange modes. Drift-like fluctuations have also been observed in the

GAMMA-10 mirror [106, 167]. Flute-like modes and drift waves have been studied in other linear

devices, such as Mirabelle [20], where the appearance of flute-like modes or drift waves were

controlled by varying the field and limiter diameter.

The rotational interchange and curvature interchange can both be flute-like modes. Rotational

interchange (also called the “centrifugal instability”) is driven by the aligned centrifugal force and

pressure gradient vectors, but curvature-driven interchange is instead driven by magnetic curvature

and is typically referred to as simply the “flute” or “interchange” instability. Rotational interchange

[81] has been observed in the LAPD in the past [137, 139], and the curvature-driven interchange

instability has been observed in many other mirror machines [165, 50, 124].

Biasing or modifying the electrical connection of the plasma with the end wall has proven to be

a important actuator in many mirror machines such as TMX-U [72], GAMMA-10 [106], and GDT

[10, 9, 15], and will be utilized on WHAM [46]. Active biasing was not attempted in this study,

but the intrinsic rotation and strong electrical connection to the source region may provide a useful

analog for edge biasing in other mirror machines.

Because the LAPD exhibits fully-developed, broadband turbulence, it is difficult to identify

the presence of a particular instability by the linear properties. Nevertheless, the LAPD has

good coverage of perpendicular spectra using correlation-plane techniques, and some measure of

parallel spectra using the correlation between two axially-separated probes. A space-time spectral

characterization of the many instabilities present in this low beta, moderate aspect ratio, gas-dynamic

trap regime is attempted.

The goal of this study was to investigate the changes to turbulence and transport in LAPD mirror

configurations. Of particular interest were the potential coupling of the interchange instability

with drift waves or other modes, and the effect of the mirror geometry on cross-field particle

flux. Presented is a characterization of the observed modes and the effect of introducing a mirror
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geometry.

This chapter is organized as follows. Sec. 3.2 discusses the configuration of the LAPD and the

diagnostics used. Sec. 3.3 covers the changes seen when imposing a magnetic mirror configuration

on profiles, particle flux, drift waves, turbulence, and magnetic fluctuations. Sec. 3.4 explores the

changes in 2d (x-y plane) structure. Sec. 3.5 discusses the active and expected instabilities and

reasons for their modification. Sec. 3.6 summarizes the study and discusses the requirements for a

deeper investigation.

3.2 The experiment and device configuration

3.2.1 The Large Plasma Device (LAPD)

In this study, the plasma was formed using an emissive, 72 cm diameter barium-oxide (BaO) cathode

[61] (mapped to 60 cm in a flat field) and a 72 cm diameter, 50% transparent molybdenum anode

that accelerate electrons across a configurable 40−70V potential; voltages of 60 and 63V were

used in this study. The source has since been upgraded to a lanthanum hexaboride (LaB6) cathode

[127] that enables access to higher-density, higher-temperature regimes, but all the data in this study

are from plasma formed by a BaO cathode.

The flexible magnetic geometry of the LAPD was used to construct a variety of magnetic

mirror configurations. The discharge current, fill pressure, and other machine parameters were held

constant. The typical plasma parameters observed in this study can be seen in table 3.2. Data in

several mirror ratios and lengths were collected (see table 3.1) but emphasis is placed on the short

cell because the highest mirror ratio possible (M = 2.68) with a 500 Gauss midplane field could

be accessed and probes were able to be placed outside of the mirror cell. An overview of the axial

magnetic field for the the short mirror configurations and probe locations can be seen in fig. 3.1. 2-

or 3-cell mirror configurations were also explored but are not examined in this study. All results

presented below are from the short mirror cell configuration unless otherwise specified.
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Figure 3.1: Cartoon of the Large Plasma Device and the coordinate system used. Only four of the

eleven mirror configurations studied are plotted for clarity (mirrors of the same length have similar

shapes and simply scale with mirror ratio). Diagnostic set varied by datarun; unlabeled diagnostics

were used in both dataruns.

Mirror length Mirror ratios (M)

Flat 1

3.51 m (short) 1.47 1.90 2.30 2.68

7.03 m (medium) 1.49 1.98 2.46

10.86 m (long) 1.47 1.97 2.44

Table 3.1: Magnetic mirror lengths and ratios. The lengths are measured where the curvature

changes sign and the ratio is the maximum divided by the minimum. Approximately 3.5m must be

added to the length if the good-curvature region is included. In the case of small asymmetries, the

field strengths were averaged before calculation of the mirror ratio.
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3.2.2 Diagnostics

All diagnostic signals were recorded with an effective sampling rate of 6.25 MHz (16-sample

average at 100 MSPS) and a spatial resolution of 0.5 cm. When necessary, averaging over time is

done in the approximate steady-state period of the plasma discharge (4.8 to 11.2 ms from the 1 kA

trigger signal). Unless otherwise noted, all data presented will be from probes inside the mirror

region (z≈ 7m). An example of a raw Isat signal and processing steps can be seen in fig. 3.2. The

raw signals are detrended by subtracting the mean across shots to obtain the fluctuations only. FFTs

are then taken of these fluctuations for calculating power spectra and cross-correlated quantities.

Large-amplitude plasma signals (with the largest contribution to transport) are seen at frequencies

below 200 kHz and are thus the focus of this study. Plasma signals at frequencies above 200 kHz are

very small and are dominated by noise (from electronics and instrumentation) and are thus ignored.

Fluctuation power profiles can then be constructed.

The data presented were collected in two phases. The first phase (“datarun”), DR1, collected

Langmuir probe (Isat and V f ) and magnetic fluctuation (“Bdot”) [47] traces. 50 shots were taken at

each position for every configuration. The second phase, DR2, was conducted with a similar set of

diagnostics focused on temperature measurements (swept and triple probe) and 2d x-y structure. 15

shots were taken at each position, except for Langmuir sweeps with 64 shots. When appropriate, all

data for each position were shot-averaged. “Isat” will be used interchangeably with “density” and be

presented with units of density (assuming a flat Te = 4.5 eV profile).

3.3 Mirror-induced changes

3.3.1 Profile modification

Because the field at the plasma source increases with M, the midplane plasma expands by a factor

of
√

M. This bulging of the midplane is a direct result of magnetic flux conservation: S1B1 = S2B2,

where S is the area and B is the field for two locations in the LAPD. Thus, the ratio of radii at
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Figure 3.2: Raw data and basic processing steps for LAPD probe diagnostics as demonstrated by

an Isat trace from a DR1, M = 1 mirror at 26 cm. Data are truncated from 4.8 to 11.2 ms (a) and

detrended (b). Power spectral density is calculated (c), and a power profiles can be constructed (d).

The shaded regions are excluded from this analysis.
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Cathode radius (M=1) xc 30 cm
Machine radius R 50 cm
Plasma length L ∼ 17 m
Primary species He-4 1+
Electron-helium mass ratio 1.37×10−4

Neutral pressure 6−20×10−5 Torr
Quantity Core x = xPF Unit
Density ne 1.25×1012 0.6×1012 cm−3

Ion temperature Ti ∼ 1 — eV
Electron temperature Te 4 5 eV
Beta (total) β 9×10−4 6×10−4

Midplane magnetic field Bmid 500 — G
Plasma freq Ωpe 10 7.1 GHz
Ion cyclotron freq Ωci 200 — kHz
Electron cyclotron freq Ωce 1.4 — GHz
Debye length λD 0.013 0.021 mm
Electron skin depth λe 30 43 mm
Ion gyroradius λci 5.8 — mm
Electron gyroradius λce 0.13 0.15 mm
Ion thermal velocity v̄i 6.94 — km/s
Electron thermal velocity v̄e 1190 1330 km/s
Sound speed cs 13.0 13.9 km/s
Alfvén speed va 446−1140 −1620 km/s
Ion sound radius ρs 65 69 mm
Ion-ion collision freq νii 730 380 kHz
Electron-ion collision freq νei 6.77 2.59 MHz
Electron collision freq νee 9.57 3.66 MHz
Ion mean free path λi,mfp 26 50 mm
Electron mean free path λe,mfp 175 512 mm
Spitzer resitivity η 192 146 µΩm

Table 3.2: LAPD machine information and plasma parameters in the core and peak-fluctuation

region (x = xPF) at the midplane in this study. Dashed quantities are assumed to be identical to core

quantities.
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Mirror ratio 1 1.47 1.90 2.30 2.68

Scale factor 1 1.21 1.38 1.52 1.64

xc (cm) 30 36 41 45 49

xPF (cm) 26 32 36 40 43

Table 3.3: xc and xPF locations for each mirror ratio when scaled by the expected magnetic

expansion.

locations 2 and 1 is proportional to
√

B1/B2. The physical locations of the peak fluctuation region

– xPF (maximum gradient) – and the cathode radius xc can be seen in tab. 3.3. This expansion

leads to broader plasma profiles and decreased core density but are similar in the core and at xPF

when magnetically-mapped to the cathode radius xc as seen in fig. 3.4. Dips between the core

(x/xc = 0) and the peak fluctuation region (x = xPF) are seen, but fluctuation power from this region

(x/xc = 0.5 to 0.7) is not significant (fig. 3.8) so this region is not the focus of this study. The

line-integrated density as measured by a 56 GHz heterodyne interferometer increases up to ∼ 35%

from the M=1 case of ≈ 8×1013 cm−2 (fig. 3.5) but does not increase past a mirror ratio of 2.3.

The error of the Isat profiles as represented by the standard deviation (scaled by the time-averaged

profiles) can be seen in fig. 3.3. The error is relatively small and should not play a factor in our

analysis.

Discharge power increases only slightly (3%) at higher mirror ratios, so discharge power remains

similar for all mirror cases. Langmuir sweeps and triple probe measurements of Te (DR2) show

slightly (less than 25%) depressed core and slightly elevated edge Te with increasing mirror ratio

(fig. 3.6) but otherwise remains unaffected. The temperature affects Isat measurements through the
√

Te term so small changes are not significant relative to changes in density (a 25% change in Te

would yield a 12-13% change in Isat). The low temperatures indicate that the plasma is collisional

given the length scales of the system (as seen in table 3.2) and isotropic. Plasma potential decreases

across the plasma (fig. 3.7) when the mirror ratio exceeds 1.9. This drop in plasma potential may be

caused by the grounding of the anode to the wall, which should begin at M = 1.93 given the 72 cm
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Figure 3.3: Shot-to-shot variation of Isat profiles

anode and 100 cm vessel diameters. The reason for the local minimum in the M=2.68 is unknown.

This potential profile creates a sheared EEE×××BBB velocity profile (fig. 3.7) limited to 500 m/s in the

core and exceeding ∼ 3 km/s at the far edge. The flow does not exceed 4% of the sound speed

(tab. 3.2) in the core or gradient (x = xPF ) region. The mirror ratio does not appear to significantly

alter azimuthal flow. The floating potential (V f ) profile also exhibits behavior similar to the plasma

potential (fig. 3.7), but is modified by the presence of primary electrons.

3.3.2 Reduced particle flux

The density fluctuation power peaks at the steepest gradient region (xPF = x/xc ∼ 0.88) as expected

as seen in fig. 3.8. xPF occurs at nearly the same magnetically-mapped coordinate for each mirror

ratio. These density fluctuations are a large driver of changes in the cross-field particle flux (eq. 3.1).

V f fluctuations also peak at the same location, but the total power across mirror ratios are similar

and, relative to density fluctuations, much lower in the core. Core density fluctuations below 2 kHz

are substantial in the core at lower mirror ratios, possibly caused by hollow profiles, nonuniform
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Figure 3.4: Midplane Isat profile, shot-averaged and time-averaged from 4.8 to 11.2 ms (assumed

of Te = 4.5 eV based on triple probe and Langmuir sweep measurements). Effective area was

calibrated using a nearby interferometer. Profile shape remains similar in the core and gradient

region when mapped to the cathode radius xc. The dips in profiles at higher M below x = xPF are

of unknown origin and are not the focus of this study. Shot-to-shot variation is less than 5% for

x≤ 0.95xc and less than 9% for x≤ 1.4xc for all cases.
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The increased temperatures directly at the plasma edge, indicated by dotted portions of the curves,

are likely artifacts caused by sheath expansion in lower densities. Changes in mirror ratio lead to at

most 25% change in Te. The plasma is collisional and isotropic.
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Figure 3.7: Plasma potential (a) and derived EEE×××BBB velocity profiles (b) from Langmuir sweeps

at the midplane. x/xc > 1.2 has been excluded from the graph for greater clarity in the core and

gradient region. The electric field was calculated by taking the gradient of the spline-smoothed

plasma potential profile. The Mach number (in percent) is calculated using the approximate sound

speed evaluated at x = xPF (tab. 3.2). The overall structure of the flows does not appreciably change

when mirror ratio is varied.
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cathode emissivity, or probe perturbations, but are outside the scope of this study.

A spectral decomposition technique is used to calculate the time-averaged particle flux [125] as

seen in fig. 3.9:

ΓẼ×B = ⟨ñṽ⟩= 2
B

∫
∞

0
k (ω)γnφ (ω)sin

(
αnφ

)√
Pnn (ω)Pφφ (ω)dω (3.1)

where k is the azimuthal wavenumber, γ is the coherency, α is the cross-phase, and P the power

spectrum. This method is more robust than the naive time-integration of n(t) Ẽ (t) because it

accounts for the coherency of the density-potential fluctuations. This representation also enables

inspection of each contributing term in the event of surprising or problematic results. A plot of

the Isat-V f phase can be seen in fig. 3.10. The flattened particle flux in the core is likely caused

by primary electrons emitted by the cathode. These electrons have long mean free paths (greater

than a few meters) and sample fluctuations along the length of the machine, mixing the phases of

these fluctuations. Since floating potential is set by the hotter electron population, the measured

V f fluctuations are no longer related to the local plasma potential fluctuations of a wave by bulk Te

[22]. These primary electrons have a significant effect in the core within the region mapped to the

cathode x ≲ xc. Isat fluctuations are not affected.

Azimuthal wave number is measured by two V f probe tips 0.5 cm apart. This wavenumber

estimation technique yields good agreement with correlation plane measurements (fig. 3.31). Note

that Ẽ is not directly measured – it is instead calculated through the k(ω)
√

Pφφ (ω) terms. The

Ẽ×B particle flux clearly decreases with mirror ratio; most of this decrease is attributed to the

decrease in density fluctuation power. The particle flux for each mirror ratio was normalized to the

M = 1 case via the plasma circumference to compensate for the increased plasma surface area at

the same magnetically-mapped coordinate x/xc. This particle flux is consistent with diffusive flux

at the Bohm rate DB = 1
16

Te
B ≈ 6.25m2s−1 as observed in other transport studies [102].

Te profiles and fluctuations may affect particle fluxes but measurements of both were not taken

in the same datarun; nevertheless, a quantification of the effect of Te on particle flux is attempted.

Te fluctuations affect Isat-based density measurements through the T−1/2
e term, and triple probe and
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Langmuir sweep Te measurements suggest that temperature gradients have a negligible impact. A

naive incorporation of temperature fluctuation data from DR2 into particle fluxes from DR1 suggest

that cross-field particle flux may be underestimated by up to 50% via the Isat temperature term, but

the trend and relative fluxes across mirror ratios remain unchanged. Such a naive incorporation

should be treated with skeptisism because of the sensitive nature of the flux with respect to the

gradient and the differences in profiles between DR1 and DR2. These difference in profiles may

be caused by cathode condition, deposits on the anode, or a different gas mix and are difficult to

account for.

3.3.3 Compensating for the Te profile

Electron temperature (Te) compensation for the Isat measurement can be done in several ways. One

way is to account for the average temperature (i.e., steady state) when calculating the density from

Isat. Te can be gathered from triple probe or swept measurements. Triple probe measurements are

generally less reliable than swept probe measurements. The difference between swept and triple

probe Te measurements can be seen in fig. 3.11. The two techniques have roughly good agreement,

though the triple probe appears to slightly underestimate the temperature. The spikes in the edge are

likely from sheath expansion of the probe in the swept measurements exacerbated by low density

[153] (see fig. 3.6).

Te fluctuations can affect Isat fluctuation measurements through the
√

Te term. In this case, Te

measurements are difficult to compensate for in DR1 because of the changes in profiles between

DR1 and DR2, so the Te fluctuations were included by finding the ratio in DR2 of Isat fluctuations

before and after including these Te fluctuations. This ratio was then applied to DR1. The issue of

mismatched profiles still persists but this method allows for changes in fluctuation power between

the two datarun sets. In general, T̃e/Te fluctuations are at most than 30% (near the edge), and much

lower in the core seen in fig. 3.12.

This Te compensation becomes particularly important when calculating the Isat profile gradients
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Figure 3.13: Diffusivity relative to DB using a tanh fit for the density profile and the particle flux

measurement assuming a constant Te of 4.5 eV across the profile.

which is needed when calculating the diffusivity. A calculation of the diffusivity scaled to the Bohm

diffusivity DB = 1
16

T
eB can be seen in fig. 3.13. This calculation uses the particle flux calculated

earlier (in the paper) and tanh fit on the density profile for a density smooth gradient. In general,

mirror ratios higher than two have a lower diffusivity. When the particle flux is compensated for

Te fluctuations, the temperature profile used in for the Bohm diffusion coefficient, and the density

profile is smoothed convoluting a σ = 2 cm gaussian, the diffusion coefficient relative to DB are

roughly 2.5 times greater, seen in fig. 3.14. The trend, however, remains relatively the same: higher

mirror ratios tend to have a lower diffusivity. The impact of different profile smoothing methods on

the density gradient can be seen in fig. 3.15.

3.3.4 Drift waves

The Isat fluctuation power spectra in the region of peak power x ∼ xPF, also where the density

gradient is strongest, can be seen in fig. 3.16. Notably, the fluctuation peaks shift to higher
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Figure 3.16: Isat (density) fluctuation power averaged over a 1 cm region around xPF at the midplane.

The fluctuation power is largely featureless below 2 kHz and beyond 40 kHz aside from electronics

noise.

frequencies and decrease in total fluctuation power. The shift in frequency may be a result of

the the Doppler shift caused by the change EEE×××BBB plasma rotation seen in fig. 3.7 at the location

x/xc ≈ xPF. The shift in frequency is somewhat smaller than what would be expected from the field

line-averaged increase in Alfvén speed at the longest possible wavelength. The phase angle of Isat

and V f fluctuations provides insight into the nature of the driving instability. Including a nonzero

resistivity η in the drift wave leads to a small phase shift δ between density and potential. This

phase shift δ in a collisional plasmas is on the order of δ ≈ ωνe/k2
∥v̄

2
e [74]. Estimating this quantity

using measured and typical values (k∥ = 0.18 rad/m, v̄e = 1300 km/s, νe = 3.7 MHz, ω = 12 kHz)

yields a substantial phase shift of δ ≈ 46◦, which roughly agrees with the phase shifts in fig. 3.10,

though the implied increased phase shift at higher frequencies does not agree with measurements.

As seen in fig. 3.10, the phase shift between Isat and V f fluctuations are larger below 10 kHz,

implying the presence of additional modes beyond or significant modification of resistive drift wave

fluctuations. The phase difference between two V f probes, 3.83 m apart, was used to calculate

52



0.2

0.1

0.0

0.1

0.2

k 
 (

ra
d/

m
)

k  and coherency (M=1)

= 34

2 × 103 104 4 × 104

Frequency (Hz)

0.0

0.2

0.4

0.6

0.8

Co
he

re
nc

y

a.

b.b.

Figure 3.17: k∥ (a) and coherency γ (b) as a function of frequency. Only results from the M = 1 case

are available, but it is clear that there are long (≳ 34m) wavelength modes at 3 and 12 kHz. The

probes used for calculating k∥ were located at the midplane (z=8.31) and z=12.14 m, 3.83 m apart.
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the parallel wavelength 2π

λ
= k∥ = φVf1, Vf2/∆z assuming the wavelengths are greater than 7.66

m. The two probes mapped to the same field line only in the M = 1 configuration, so parallel

wavenumbers are available only for the flat case. Parallel wavenumbers are theoretically calculable

from 2d correlation planes but the coherency dropped dramatically when a mirror geometry was

introduced. A 34 m wavelength mode likely contributes to the measured k∥ from 3 to ≳ 10 kHz (fig

3.17). Drift waves are long-wavelength modes so coherent density and potential fluctuations along

the flux tube are expected. The coherency is a measure of similarity of the spectral content of two

signals, in this case V f probes 1 and 2. The coherency is defined as γ =
|⟨P1,2⟩|

⟨|P1,1|2⟩⟨|P2,2|2⟩
where Px,y is

the cross-spectrum between signals x and y and the angle brackets ⟨⟩ denote the mean over shots.

The coherency between the two V f probes drops off with increasing frequency, with a slight bump

at around 12 kHz. There are several candidates for the driving mechanism of the 3-5 kHz mode, but

the 12 kHz mode is most likely a drift-Alfvén wave.

Experimental measurements (and various theories) [100] suggests that the normalized density

fluctuation level ñ/n should fall near 3-10 ρs/Ln. A plot of this relation using experimental data

can be seen in fig. 3.18. However, comparison of ñ/n with the mixing length 1/(kyLn) [100] show

that the normalized density fluctuations are about an order of magnitude too small for the 1/(kyLn)

observed which is unexpected if these fluctuations correspond to drift waves. The normalized

density fluctuation amplitude is expected to scale with the gradient scale length Ln, so the fluctuation

power then scales with L2
n. A plot of scaling Isat fluctuation power – assuming constant ky – can be

seen in fig. 3.19. The 3 kHz mode appears to follow this Ln scaling.

Another issue with this drift-wave interpretation of results is that the electron thermal diffusion

along the field line is too high. In the fluid picture, the plasma must be collisional enough that

thermal equilibrium is guaranteed (i.e., the temperature is Maxwellian) , but if the collision rate

is too high then thermal gradients can develop along the field line[63]. This condition on thermal

diffusivity condition for the drift wave ω and kz is ω ≪ k2
z v2

e,th/νei. Plugging in values from the

experiments yields frequencies at least 5 times greater than mandated by the diffusivity condition

and the condition is violated. This condition violation may be responsible for the unexpected phase

54



5 × 10 1 6 × 10 1 7 × 10 18 × 10 1

s/Ln

1.6 × 10 1

1.8 × 10 1

2 × 10 1

2.2 × 10 1
2.4 × 10 1
2.6 × 10 1
2.8 × 10 1

n/
n

1

1.471.92.3

2.68

Density fluctuations vs s/Ln

Measurement
n/n = 3 s/Ln

Figure 3.18: Normalized density fluctuations vs ρs/Ln. The measured values fall close to the

ñ/n = 3ρs/Ln line which is consistent with theory.

shifts seen between the density and potential fluctuations if drift waves were the only instability

present.

3.3.5 Turbulence modification

The wavenumber-power relation in fig. 3.20 shows decreased fluctuation power when a mirror

configuration is introduced. However, there is no discernible trend when the mirror ratio is increased

further. The exponential nature of the curve also remains unchanged. The greatest decrease in

fluctuation power occurred in low and high ky’s, around 10 and 70 rad/m. The shape of the power-ky

curves follow an exponential distribution, and is inconsistent with a 2d drift-wave turbulent cascade

(Wakatani Hasegawa k−3) [161]. The steep dropoff in fluctuation power with ky suggests that

higher-wavenumber fluctuations do not have a significant effect on transport.

Previous simulations in a flat field [56] predicted frequency and wavenumber spectra that can be

fit with many power laws or exponentials, but the data presented here (figs. 3.16, 3.21, 3.20) appear
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Figure 3.19: Isat fluctuation power when scaled by the square of the gradient scale length and the

squared density. We expect this value to be constant assuming the same k⊥.

to follow an exponential relationship within measurement variation.

Core fluctuations appear to decrease dramatically as seen in the Isat fluctuation power (fig. 3.8).

The Isat decorrelation time increases from∼ 0.7 ms for M = 1 to∼ 2.5 ms for M = 2.68. At x = xPF ,

decorrelation times for all mirror ratios remained at 0.2 ms.

3.3.6 Magnetic fluctuations

The perpendicular magnetic fluctuation (B⊥) component of the drift-Alfvén wave can be seen

in fig. 3.21. These B⊥ fluctuations are spatially and spectrally coincident with the electrostatic

fluctuations (fig. 3.16). Drift-Alfvén waves have been studied in the LAPD in the past [103, 159];

strong coupling is observed for βe > me/mi which is satisfied in this study. The Alfvén speed

ω/k∥ = vA = B/
√

4πnM (given ω ≪ Ωci) when averaged over the entire column ranges from

∼ 450 to ∼ 1600 km/s. A k∥ corresponding to a wavelength λ = 34m roughly falls within the

bound established by the kinetic and inertial Alfvén wave dispersion relations at the frequency
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Figure 3.20: Fluctuation power summed for each ky for frequencies up to 100 kHz, smoothed.

The contribution to fluctuation power is negligible past 100 kHz. The fluctuation power decreases

substantially when a mirror configuration is introduced, but no trend is seen otherwise and the ky

spectra remain exponential. Note the logarithmic scale.
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Figure 3.21: B⊥ fluctuation power averaged at the core from 0 to 3 cm (a) and around the peak

fluctuation point (x∼ xPF) (b). Fluctuation power decreases across the board with mirror ratio except

for core frequencies close to Ωci. Peaks around 10−30 kHz at xPF are consistent (region 2) with

drift-Alfvén waves and the near-cyclotron frequency features in the core may be resonating Alfvén

waves created by the magnetic mirror. Frequencies below 2 kHz and dominated by instrumentation

noise and thus excluded.
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peaks observed at x ∼ xPF seen in fig. 3.21. The lengthening of field lines caused by curvature

accounts for at most 10% of the change in frequency.

The spatial extent of the B⊥ features identified in fig. 3.21 are plotted in fig. 3.22. Feature 1

at ≈ 6 kHz shows increased fluctuation amplitudes at x = 0 for mirror ratios 1.9 and above, but

for M = 1 and M = 1.47 there is no increase in fluctuation power. A similar feature, but at a much

smaller level, is observed in Isat fluctuation power in the core as well. This core feature may be

caused by the density depletion in the core seen in the Isat profile (fig. 3.4) driving low-amplitude

waves or instabilities. Feature 2 in fig. 3.22 is the magnetic component of the drift-Alfvén wave. The

fluctuation power peaks at the gradient region and corresponds with the peak in density fluctuations

(fig. 3.8).

Feature 3 is particularly interesting because this is the only fluctuating quantity to increase with

mirror ratio, seen in fig. 3.23. This feature may be broad evanescent Alfvénic fluctuations from the

plasma source. These fluctuations have been observed in the LAPD in the source region alongside

an Alfvén wave maser at 0.57 fci [104].

The sub-2 kHz modes in B⊥ and its harmonics are nearly constant in power across the entire

plasma; these features are likely perturbations from the magnet power supplies and thus ignored.

The lack of radial, azimuthal, and axial structure in these magnetic signals below 2 kHz and narrow

bandwidth indicate a non-plasma origin. Significant radial and azimuthal structure in B⊥ fluctuation

power starts to appear in frequencies larger than 4 kHz.

The drift-Alfvénic nature of the 12 kHz Bdot feature is confirmed by changing the flat field

from 500G to 400G: the feature shifts down in frequency from 12 to 10 kHz seen in fig. 3.24. From

the drift wave and Alfvén wave dispersion relations the frequency is expected to be 400G / 500G

= 0.8 of the original, which is approximately what is observed. The ky of the drift-Alfvén wave

also has an effect and may be responsible for a 10 kHz / 12 kHz = 0.83 factor instead.

There may be some sort of resonator made by the mirror cell and its interaction with Alfvén

waves. In fig. 3.25, the behavior of the B⊥ spectrum in the core changes dramatically between 1
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Figure 3.23: Summed fluctuation power of B⊥ in the core (x/xc ≤ 0.3) as a function of mirror length

and ratio. Top (a): the fluctuation power is normalized by the sum of the full-spectrum summed

power. Bottom(b): the frequency of the power distribution > 50 kHz weighted by the fluctuation

power.
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Figure 3.24: B⊥ flat field for 500G and 400G flat fields. The frequency of the identified drift-Alfvén

wave at 12 kHz drops when the field is lowered, as expected.

and 10 kHz in the short mirror when compared with the medium and longer mirrors. It’s unlikely

that this is an Alfvénic fluctuation because the wavelength is an order of magnitude too large to fit

in the machine.

For completeness, Bz fluctuation measurements are seen in fig. 3.26. The peaks in the 10

kHz region are potentially caused by slight coil misalignment of the probe (picking up B⊥), or a

compressive component of the drift-Alfvén wave.

The low frequency fluctuations in the Bdot spectra may seem important but plotting the spectra

as a function of position (fig. 3.27) clearly shows the harmonics of the signal and the narrow

bandwidth of them. This spectral feature is present regardless of mirror ratio, but changes in

magnitude in approximate proportion with the field, i.e., the magnet power supply current. This

power supply-induced field fluctuation can easily be seen in the ≈ 625 Hz mode in Bz, seen in

fig. 3.28. The fluctuation power is largely constant across the entire plasma column, with the
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Figure 3.25: B⊥ at x=0 for different mirror lengths. The origin of fluctuations between 1 and 10

kHz is unknown.

fluctuation power increasing with increased mirror fields. The taper of the fluctuation power at the

edge could be caused by the background field vector no longer pointing in the z direction as the

probe approaches the magnet coil. In general, the probe valves are not centered between the magnet

coils, leading to rotation of the of the field vector as the probe is pulled out.

3.4 2d Structure

The perpendicular magnetic field structure is measured by collecting x-y planar bdot (dB{x,y,z}/dt)

data alongside a stationary, axially separated Isat reference probe (DR2). This probe provides a

phase reference for the magnetic field fluctuations, allowing a 2d map of relative phase to be

constructed over many shots. Only the region around xPF was measured because of constraints on

probe movement. The amplitude and phases for each magnetic field component are then used to

reconstruct the local magnetic fluctuation vector BBB. The axial current density structure, jz, can be

derived from this vector field. BBB and the corresponding jz for the flat-field (M = 1) case can be seen

in fig. 3.29. Two main current channels can be seen with the magnetic fields circulating around
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Figure 3.26: Bz fluctuations in the core and at xPF . The peaks near the edge could be from coil

misalignment or potentially a compressible component of the drift-Alfvén wave.
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Figure 3.27: B⊥ fluctuation power for mirror ratios of 1 and 2.68. Lower frequencies are shown and

the colorbar clipped to show detail in what appears to be power supply fluctuations.
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Figure 3.29: Perpendicular magnetic field and the derived current density for the flat-field (M = 1)

case using a Bdot probe with an axially-separated Isat reference (DR2). The x-y plane was centered

near xPF .

them. This structure quickly decoheres in time as expected in a turbulent plasma. At higher mirror

ratios, the field magnitude and corresponding current density decrease (which was also seen in DR1:

fig. 3.21). Similar structure is seen in the mirror configurations; the M = 1.9 and M = 2.68 cases

can be seen in fig. 3.30.

Using two, axially-separated, correlated Isat measurements (DR2), with one collecting x-y planar

data, the azimuthal mode number m (radially integrated) was calculated. Higher-frequency and

higher-m features are seen with increasing mirror ratio (fig. 3.31). The increased frequencies may be

caused by a change in Doppler shift by the EEE×××BBB flow. This higher-m trend suggests that azimuthal

structures do not scale with increased plasma radius but instead remain roughly the same size. The
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Figure 3.30: Perpendicular magnetic field and the derived current density for the M = 1.9 and

M = 2.68 cases computed in the same manner as fig. 3.29. The x-y planes were centered near xPF ,

and the view size was kept constant across the plots. The structure is much less obvious in the

mirror cases, but all exhibit the expected Alfvén wave pattern

.
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limited planar probe movement caused an increase in the lower bound on m in higher mirror ratios.

At mirror ratios 1.47 and higher, the lower frequency component (< 10 kHz) appears to decrease

significantly in amplitude. Calculating k⊥ from m evaluated at x∼ xc yields similar ky values as the

two-tip technique (fig. 3.32). The average ky for a given frequency can be calculated using two V f

tips on the same probe by calculating the phase difference and dividing by the spatial separation of

5 mm: ky = φvf1, vf2/∆y [14]. The maximum |ky| measurable before aliasing is π/∆y≈ 628 rad/m.

As seen in fig. 3.32, the ky spectrum remains similar across mirror ratios, but the wavenumber

extends further into higher frequencies with increasing mirror ratio. These azimuthal mode numbers

and gradient scale lengths are consistent with linear simulations using the 3d fluid code BOUT [122]

in the flat, unbiased case.

3.5 Discussion

3.5.1 Lack of mirror-driven instabilities

No evidence is seen for mirror-driven instabilities — curvature, loss-cone, or otherwise. Given the

LAPD parameters in this study (tables 3.1 and 3.2), the collision frequencies are sufficiently high

such that the mirror is in the gas-dynamic regime: losses out of the mirror throat are governed by

gas-dynamic equations rather than free streaming through the loss cone. To be in the gas-dynamic

regime, the mirror length must exceed the mean free path of the ions [77]:

L > λii lnM/M (3.2)

where L is the mirror length, λii is the ion mean free path, and M is the mirror ratio. These collisions

populate the loss cone and maintain a (cold) Maxwellian distribution, eliminating the possibility of

loss-cone-, ion-driven instabilities like the AIC [23] or DCLC [147, 84] instabilities that have been

observed in other (historic) devices.

The paraxial, approximate interchange growth rate is [124, 134]

Γ0 =
cs√

LMLP
(3.3)

69



25

50 M = 1.0

25

50 M = 1.47

25

50m

M = 1.9

25

50

75 M = 2.3

103 104 105

Frequency (Hz)

25

50

75 M = 2.68
0.

1
0.

2
0.

3
0.

4
0.

5

Isat mode number amplitude

b.

c.

d.

e.

a.

Figure 3.31: Azimuthal mode number m amplitudes calculated from two axially-separated, corre-

lated, Isat probes. Increasing mirror ratio (a to e) leads to increased m at higher frequencies. (DR2)

70



1.50

1.25

1.00

0.75

0.50

0.25

0.00

0.25

k y
s

103 104 105

Frequency (Hz)

150

125

100

75

50

25

0

25
k y

 (r
ad

/m
)

ky (two-tip)

M = 1.0
M = 1.47
M = 1.9
M = 2.3
M = 2.68

Figure 3.32: ky averaged about xPF and smoothed for each mirror ratio calculated using two

vertically-separated V f tips on the same probe. Little change is seen in ky at lower frequencies but

higher frequencies tend towards larger ky at higher mirror ratios.

71



which yields Γ0 ≈ 1.2 kHz using LM ≈ 7m and LP = 17m. cs is used instead of v̄i because Ti≪ Te

and mirror length L is split to distinguish between the contributions of the plasma length and mirror

length to inertia and to curvature drive, respectively. Interchange is not visible in-part because the

aspect ratio of these mirrors is quite large, limiting the growth rate of interchange. The length of

the mirror (3.5 m), radius of curvature (6-7 m), and plasma column (17 m) are much larger than

the radius of the plasma (0.5 m maximum), so the plasma inertia is large relative to the instability

drivers. Line-tying to the cathode may further lower the growth rate. The hot cathode used for

plasma formation could function as a thermionic endplate that can supply current to short out the

flute-like interchange perturbations. Line-tying has been seen in flux rope experiments on the LAPD

using a hotter, denser source [156], also in other devices [52], and is why interchange was not seen

in the earliest mirror machines [124]. Note that the plasma terminates on the cathode or end plates

before the magnetic field flares out, so there is no contribution to stability from an expander tank

as seen in other GDTs [134, 77]. Finite Larmor radius (FLR) effects may provide a stabilizing

effect for larger azimuthal mode numbers. At the highest mirror ratio, assuming a plasma radius of

a0 =
√

2.68∗ xPF = 43 cm, the FLR stability criterion m
2

ρiL
a2

0
> 1 [134] suggests a stabilizing effect

may be present for azimuthal mode numbers m > 4.

If the curvature-induced interchange instability were observable, then introducing a mirror

configuration would lead to new features in Isat and, potentially, Bdot fluctuations. In particular,

low-frequency mode(s) – likely less than 10 kHz given the low m-number and plasma rotation

rates – would be observed growing from the pressure gradient region. For onset of the interchange

instability, the mirror curvature or plasma pressure would need to be increased but the precise

conditions required for this onset are not yet known for the LAPD.

Interchange could also be at least partially stabilized by the continuous production of electrons

in the core that are electrostatically trapped by the ambipolar potential [66]. The intuition behind

this stabilization mechanism is as follows: electrons are continuously produced via ionization of

neutrals, and any change in the local potential will cause more or fewer electrons to be lost out

the ends of the device along that field line, counteracting the potential change. This stabilization
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mechanism has been experimentally demonstrated to completely suppress interchange when the

ambipolar potential Φ ≳ 6Te [90].

The EEE×××BBB shear flow present (fig. 3.7) may also make a contribution to the stabilization of

interchange [134, 10, 9, 15]. The estimated shearing rate is between 3 and 10 kHz, which is greater

than the estimated ≈ 1.2 kHz growth rate of the interchange mode.

3.5.2 Instabilities driving LAPD turbulence

The 12 kHz and higher modes are most likely drift-Alfvén waves driven by the density gradient.

However, there are several possibilities for the low-frequency (3-6 kHz) modes observed in the Isat

and magnetic fluctuation spectra. Drift waves, rotational interchange, the conducting wall mode,

and a nonlinear instability. The long-wavelength nature of the mode – neither k = 0 or k = π/L –

points to a mixture of modes contributing to the fluctuations in that frequency range.

This rotational interchange mode has the following attributes, as summarized by [81]: flute-

like (k∥ = 0), |eφ̃/Te|/|ñ/n| ≳ 1, radial potential phase variation 45 to 90◦, maximum possible

|eφ̃/Te| < 1. All of these attributes are seen for the lower frequency (3 kHz) mode. The V f

radial phase variation when M > 1 is not clearly seen because the coherency is dramatically

reduced along the field line. The rotational interchange mode could couple with the drift wave at

k∥ = π/L∼ 0.37 rad/m (n = 0.5), which has been observed in the past [139] and likely present here.

Estimates of shearing rate from the EEE×××BBB flow velocity profile (fig. 3.7), calculated fluctuation

ratios, and radial phase shift variation suggest that Kelvin-Helmholtz-driven turbulence is not

significant, if present at all. Historically, biasing a limiter has been required to clearly observe the

Kelvin-Helmholtz instability [75, 137, 139]. Rotational interchange can be significant driver of the

broadband turbulence spectrum when this limiter is biased, seen in both linear simulations [122]

and biasing experiments [139].

Low frequency density fluctuations may also be driven by a flute-like conducting-wall temperature-

gradient instability which only requires an electron temperature gradient to grow (even with straight
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field lines) [16]. Simulations of turbulence in the LAPD suggest the possible presence of these

conducting wall modes (CWM) which have the highest growth rate for m≤ 20 [55]. This lower-m

mode could be responsible for the peak around 3 kHz in the M = 1 Isat fluctuation (fig. 3.16) and

azimuthal mode numbers (fig. 3.31) and for the low-frequency low-k∥ or flute-like behavior (fig.

3.17). This CWM may also be responsible for flatter electron temperature profiles seen in previous

studies [119, 139] (fig. 3.6).

These linearly unstable modes may be outgrown by a rapidly-growing nonlinear instability that

couples to drift-like modes as suggested by simulations [55]. This nonlinear instability is driven by

the density gradient at an axial mode number of n = 0 and nonlinearly transfers energy to n ̸= 0

fluctuations.

Neither the conducting wall mode nor the rapidly-growing nonlinear instability have been

studied in detail on the LAPD. Precise identification the modes present requires further study.

3.5.3 Causes of particle flux reduction

The reduction in particle flux explained by a reduction in density fluctuations can be in-part explained

by an increased gradient scale length Ln =
n

∇n (fig. 3.33), decreasing the linear drift wave growth

rate and saturation level seen in sec. 3.3.5. This gradient length reduction may also reduce the

growth rate of the rotational interchange instability, which could contribute to the low-frequency

large-amplitude density fluctuations. The influence of this density fluctuation reduction appears

reduced at higher mirror ratios past M = 1.9, where the wavenumber and phase angle appear to

decrease in magnitude. The plot showing this breakdown in particle flux can be seen in fig. 3.34.

The changes in Isat fluctuation power is the most obvious driver, but the Isat - V f phase difference,

coherency and wavenumber also seem to have an effect. The V f fluctuation power remains largely

consistent across the different mirror ratios. Note that this particle flux appears somewhat different

because this is using the uncalibrated Isat values and the flux is not scaled by solid angle. This flux

also does not use temperature-compensated Isat measurements.

74



1.0 1.5 2.0 2.5
Mirror ratio

11

12

13

14

L n
 (c

m
)

0.004

0.005

0.006

0.007

0.008

0.009

L
2

n
 (c

m
2 )

Density gradient scale length

Figure 3.33: Gradient scale length Ln and the associated term in the drift wave growth rate L−2
n .

This scale length was calculated over a 3 cm region around xPF (peak fluctuation region) at the

midplane. Increasing the mirror ratio increases the gradient scale length, which suggests weakening

of the underlying instability driver.

75



0.0

0.5

1.0

1.5
1e12 Isat fluct power

5

10

15

Vf fluct power

0.50

0.25

0.00

0.25

0.50

Wavenumber

0.6 0.8 1.0 1.2
x/xc

0.0

0.2

0.4

0.6

Coherency

0.6 0.8 1.0 1.2
x/xc

0.4

0.2

0.0

0.2
sin Isat, Vf

0.6 0.8 1.0 1.2
x/xc

0

1

2

3
1e15 Particle flux

Figure 3.34: The particle flux broken down into the components used to calculate it. The dashed

black line is simply a visual reference near the peak particle flux at x/xc = 0.95. The Isat fluctuation

power appears to be the largest driver in changes in particle flux. The colored lines correspond to

mirror ratio as seen in earlier plots.
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Figure 3.35: Decorrelation time from Isat time series data for different mirror ratios. All of the

mirror ratios have a minimum decorrelation time at xPF and much longer times (slower rate) in the

core.

The decorrelation time of Isat time series data is around 0.15 ms at xPF. An estimate of the EEE×××BBB

flow shear from fig. 3.7 (DR2) yields a shearing time between 0.1 and 0.3 ms at xPF. These times

suggest that spontaneous flow shear may be important for suppressing turbulence, as seen in other

studies [138, 27], at all mirror ratios. However, no clear trend in shearing strength is seen with

mirror ratio.

The decorrelation time of a signal is calculated by taking the autocorrelation of a signal – Isat

in this case – and finding the full-width half-max of the envelope using a Hilbert transform. This

decorrelation time can be seen in fig. 3.35. The decorrelation is minimized at xPF and maximized

in the core, further confirming the turbulent nature of the fluctuations at xPF .
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Figure 3.36: ExB shearing rate based on smoothed plasma potential profiles. This shearing rate is

comparable to the decorrelation rate at xPF , seen in fig. 3.35.

The estimated shearing rate from DR2 can be seen in fig. 3.36. The rate is plotted instead of time

because of the singularity when the flow reverses. At around xPF (x/xc ≈ 0.87), the shearing rate

is around 2 to 8 kHz meaning the shearing time is around 0.5 to 0.125 ms. This is fairly close to

the decorrelation time from the Isat time series measurements (fig. 3.35). These similar times/rates

suggests that ExB shearing may set the limit on cross-field transport.

It is important to note that the electron thermal diffusion time along the field line is very long

compared to the frequency of the drift wave (ω ≳ k∥v̄2
e/νei) [63] so the electron temperature along

the field line may not be constant on the drift wave timescale. This factor is not taken into account

in this analysis but may have substantial impact on interpretations of the measured phase shift.

3.5.4 Differences between DR1 and DR2

Directly applying signals between these two dataruns is not quite appropriate because the pro-

files/plasmas changed appreciably. These changes could have been caused by differences in cathode
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Figure 3.37: Discharge power vs mirror ratio. DR2 had roughly 5% lower discharge power than in

DR2 for unknown reasons.

temperature, emissivity, or other properties. The discharge power for DR2 was roughly 10% smaller

than what was seen in DR2 seen in fig. 3.37. Since the discharge voltages were similar (DR1: 62.5 vs

DR2: 60.5) we expect to see less dense plasmas in DR2.

Changes in the Isat profiles between the two dataruns (and between two separate measurements

in DR1) can be seen in fig. 3.38. Interestingly, there is some difference in the profiles within the

same datarun which could be caused by probe shadowing. Probe shadowing effects should be

less important in mirrors because the probe closest to the cathode magnetically maps to a region

further outside than the probes in the mirror cell. This difference in density can also be seen in

the line-integrated density from the 56 GHz interferometer (port 23): fig. 3.39. These differences

in density could also be caused by different hydrogen and helium pressures in the runs. Helium

pressure was roughly the same for both dataruns (6e-6 to 3e-6 for DR1, 6e-6 to 2e-5 for DR2), but the

hydrogen pressure was an order of magnitude higher for the DR2, on the order 7e-6 instead of 1e-7

for DR1. These differences in pressures could have had an effect on plasma formation and transport,

thus affecting profiles. Hydrogen fraction is known to have an effect on breakdown characteristics
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profile. In identical machine settings in DR1, data taken a few days apart are also different.

in the newer Lanthanum-hexaboride (LaB6) cathode.

Differences could also occur within dataruns. Calibrating the effective area of the Isat probes can

be done using the 56 GHz interferometer, but this calibration factor drifted over time and seen in fig.

3.40. This could be deposits being removed or added to the probe, affecting the effective area. This

calls into question the reliability of absolute Isat measurements, but we proceed regardless because

there’s no easy way to fix this issue.

3.6 Conclusions and future work

Turbulence and transport was studied in mirrors with varying lengths and ratios using the flexible

magnetic geometry of the LAPD. Particle flux and fluctuation amplitudes decreased up to a factor

of two when mirror ratio was increased. The primary drivers of turbulence could be the rotational

interchange mode, caused by spontaneous rotation, a nonlinear instability, drift instabilities, and

drift-Alfvén instabilities driven by the density gradient. A temperature gradient-driven conducting
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wall mode may also be present. The decrease in density fluctuation amplitudes may be attributed

to an increase in the gradient scale length caused by the dimensionally wider plasma at the mirror

midplane. Despite imposing a mirror configuration, no signs of mirror-driven instabilities were

observed. The highly-collisional, GDT-like plasma produced suppressed any velocity space insta-

bilities. The interchange growth rate was likely suppressed to an undetectable level by line-tying,

in-cell electron production, and shear flow.

Future experiments in hotter regimes with the new LaB6 cathode [127] will need to be performed

to evaluate the robustness of these results, particularly concerning the stabilization of curvature-

induced interchange. Additionally, the source field should be matched to the mirror midplane field

so that the plasma remains the same radius to isolate geometric effects. Simultaneous measurements

using flux and/or vorticity probes and Isat are needed to concretely determine if azimuthal flow shear

is modified by the mirror field, and to quantify the effect of flows on rotational interchange and drift

wave instability drive in general. Multiple simultaneous axial measurements of potential would
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enable better understanding of the axial wavenumber and identification of possible modes.
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CHAPTER 4

Creating a randomized dataset for machine learning tasks

4.1 Goal and introduction

The goal of collecting this dataset was to maximize the diversity of data coming from the LAPD.

Previous datasets – even one made of 29 million passively-collected shots over three years – did

not contain sufficient diversity to conduct an interesting ML study. In particular, the data must be

sufficiently diverse to allow an optimization study without the need to collect more data. In addition,

many diagnostics were recorded so that the signals could be correlated on the same shot, either in

the machine learning model itself or as a preprocessing step. This chapter describes the process

of collecting these data, example signals, and biases within the dataset. All of the data from this

campaign (several terabytes) is available upon request.

The LAPD has many experimental control parameters for various physics studies. While the

device can accommodate various insertable components, this dataset focuses on the parameters

fundamental to the operation of the main cathode. Specifically, half way between the cathode and

anode are three gas puff valves: East, West, and top. The aperture, duration, and triggering of these

valves has a large impact on plasma formation. A static gas fill system also exists but it is not

used. The cathode-anode voltage (and consequently, discharge power) strongly influences plasma

density and temperature downstream of the source. Additionally, the magnetic field configuration

substantially shapes the plasma column. One crucial variable not considered in this dataset is

the cathode temperature, as its adjustment and equilibration requires many hours, limiting dataset

diversity. This combination of diagnostic coverage, high repetition rate, and extensive configurability
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renders the LAPD particularly suitable for machine learning studies.

4.2 Configuration of the LAPD

Data collection was conducted in two campaigns separated by 14 months. The initial run set is

designated as DR1 and the subsequent run set as DR2. These run sets are further broken down into

dataruns which are series of discharges (“shots”) with identical operational machine parameters. A

total of 67 dataruns were collected over both campaigns. These two datarun sets had significant

intrinsic differences: DR1 had two turbomolecular pumps offline, leading to much higher background

pressures. Furthermore, the cathode condition in terms of emissivity or asymmetries is unquantified,

so there may be intrinsic differences in the plasma produced regardless of machine configuration.

The LAPD control parameters varied in this dataset were the source field, mirror field, midplane

field, gas puff valve voltage, gas puff duration, and discharge voltage. The magnetic field regions

are labeled in fig. 4.2 and effectively control the width of the plasma relative to the cathode in

their respective regions. The gas puff voltage governs gas flow rate into the chamber, though this

relationship is not yet quantified, and the gas puff duration defines the piezo valve activation period.

For DR1, the discharge voltage is applied across the cathode and anode at the same time as the

gas puff, but for DR2 applied 10 ms after gas puff initiation. This difference between runs was

not known at experiment time. While discharge voltage correlates to discharge current (and thus

power), the current depends on the machine configuration and downstream conditions and cannot

be predetermined.

These machine parameters – with the exception of gas puff duration – were randomly sampled

via Latin-hypercube sampling (LHS) for 44 of the dataruns. LHS is a pseudorandom sampler that

guarantees that each machine setting is set at least once. An example of LHS vs random sampling

can be seen in fig. 4.1. It is possible for random sampling to miss certain machine settings, or entire

portions of configuration space altogether. This fact is particularly important when the number of

samples is small, such as in this case with 44 samples. Data were then collected with these settings.
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Figure 4.1: An example of Latin Hypercube Sampling compared to a potential random sample

of five points. LHS hits all rows and columns, but random sampling may leave some sections of

parameter unsampled space altogether.

Gas puff duration was reduced for the last seven runs to 20, 10, or 5 ms (see fig. 5.3 for timings

relative to Isat signals). The breakdown of each setting in the dataset is given in appendix 4.5, Table

4.1. The top gas puff valve was used for only the first nine dataruns of DR2 because of equipment

issues. 23 of the dataruns in the dataset are not random: they were chosen to be similar to common

machine configurations used in more conventional studies, usually using flat fields (or different

cathode fields) around 1 kG. These data were taken while other diagnostics were being configured.

Isat and other probe-based measurements were acquired along y=0 lines (51 dataruns total) or

x-y grids (16 dataruns total) with spatial resolutions varying between 1.5 to 2 cm. The fixed axial

locations of the probes were 895 cm and 831 in DR1 and 1150, 1022, 863, and 639 cm for DR2 (Fig.

5.1). Six shots were recorded at each position except for the first four dataruns in DR1 with five

shots each.
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4.3 Signals collected

DR1 and DR2 had considerable overlap in diagnostics recorded, with some minor differences. A

summary of the diagnostics and their locations on the LAPD can be seen in fig. 4.2. Some of the

raw diagnostics signals and machine state information (MSI) can be seen in fig. 4.3. Some dataruns

may not contain all diagnostics, as some data were collected while other diagnostics were being set

up. The diagnostics and machine state information (MSI) recorded for this dataset are the following:

• DR1 probes: three probes were inserted into the LAPD. One had Langmuir sweeps, another

“flux probe” had Isat and two floating potential (Vf) tips, and the last “triple probe” had Isat,

Vf and electron temperature (Te). These signals were digitized at 6.25 MHz (100 MHz, 16

sample average).

• DR2 probes: four probes were inserted, namely a flux probe, triple probe, Langmuir sweeps

with Isat on a separate tip, and another flux probe. These signals were digitized at 6.25 MHz

(100 MHz, 16 sample average).

• Diodes: five diodes, axially distributed, were recorded as well. The one closest to the cathode

had a He-II line filter. The diodes were uncalibrated, have a nonlinear response, and are

sensitive beyond the visible spectrum. These diodes were a part of the MSI system and were

recorded at 25 kHz. Each diode (besides the one with the He-II filter) had 8 layers of 1-stop

(50% transmission) neutral density filter in front of the diode.

• Interferometer: signals from the 288 GHz heterodyne interferometer were recorded on an

oscilloscope at 10 MHz, which was then downsampled to 100 kHz before analysis so that the

processing computer could keep pace.

• Thomson scattering: a single point was measured on-axis at port 32, triggered at 8 ms into

the plasma for DR1 or 12 ms for DR2. Periodically the collection optics were scanned to

maximize the light collected during both run sets.
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• Spectrometer: an Ocean Optics HR4000 spectrometer recorded spectra integrated over

the duration of the shot. The spectrometer has a very narrow slit, leading to good spectral

resolution but requiring many shots for a clean spectrum.

• Monochromator (DR2 only): three Helium neutral lines were recorded, namely 587, 667,

and 707 nm, using an oscilloscope sampling at 1 MHz.

• Diamagnetic loop: the loop sits between ports 34 and 35 and consists of one large loop and

two smaller concentric loops equaling the area of the large one. These signals were digitized

using an oscilloscope at 500 kHz, but are strongly influenced by magnet power supply noise

making analysis difficult.

• Fast framing camera: a Phantom v7.3 fast framing camera recorded plasma dynamics from

the end of the machine, pointing towards the cathode. The images are monochrome, 14 bit,

14 µs exposure, 256×256 pixels, and 2,500 fps using a 105 mm lens. The camera is capable

of 36,697 fps at that resolution, but a lower one was used to lessen file transfer times and

storage requirements.

• Discharge current and voltage: as part of the MSI system, time series of discharge current

and voltage are recorded at 25 kHz.

• Magnetic field profiles: theoretical on-axis magnetic field values are calculated using the

magnet power supplies. Both are recorded as part of the MSI. For the work here, we simply

use the programmed field values for the cathode, mirror, and midplane regions. Occasionally

the calculated field would be incorrect since the power supply currents for the cathode are set

manually, which is the case in some dataruns here, but the profiles are unused in these studies

so it isn’t an issue.

• Pressures: total pressure and pressure breakdown by atomic mass unit are recorded by an ion

gauge and RGA, respectively. The RGA takes approximately two minutes to complete a scan

but the data should be reasonably accurate given the slow time-evolution of pressure.
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Figure 4.3: Example diagnostic signals and machine state information from a variety of discharges.
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Of the probes, only Isat was analyzed and used. The interferometer and Thomson scattering

signals were also analyzed. The diode signals were unanalyzed but used in a downstream machine

learning study. The spectrometer, monochromator, and diamagnetic loop remain unanalyzed and

unused, but the raw signals could be useful for ML studies as will be shown with the diode signals

(see chapter 6). The fast framing camera was useful for checking probe alignment and visualizing

plasma structure, but it was otherwise not used or analyzed for the downstream ML studies.

4.4 Data cleaning

Isat measurements in DR1 that saturated either the isolation amplifier or digitizer are excluded from

the dataset. Only 484 shots were removed out of ≈132,000, so the impact on the aggregate dataset

is minimal. This signal saturation was detected while data were being taken and was corrected

quickly.

Interferometer skips were occasionally seen, likely caused by large δn/n structures combined

with downsampling before conversion of the signal into a density measurement. Attempts were

made to unwrap these skipping traces (see fig. 4.4) but without much success, so these shots were

cut from the dataset.

The Thomson scattering (TS) diagnostic was available only for dataruns 8 and onwards in

DR1. The TS image data did not have timestamps recorded, so a rough estimate was used based

on filename and last saved time. Uncertainty in time is tolerable because conditions were identical

to datarun shots for a few minutes before and after the dataruns. Fits were taken of the average

over the entire datarun; each shot in a datarun has the same recorded TS temperature and density.

Dataruns were removed if the error on the density, measured by the square root of the covariance

of the fit amplitude, was greater than 50%. Fits above that error threshold were largely unusable.

A couple of dataruns looked like pure noise even when averaged over several hundred shots, but

were not caught by this broad criterion. 24 dataruns remained out of 30. In some runs there was

high-pixel-frequency noise at 128 and 256 (every 4th and 2nd pixel, respectively). The fitting
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Figure 4.4: An example of the interferometer skip (blue) and the attempted unwrap (orange).

routine is typically insensitive to this cleaning process, but significant differences can be seen in

particularly low-density plasmas where the photon counts are low. An example of this process can

be seen in fig. 4.5.

4.5 Data bias

Data bias and imbalance in the training set can be exacerbated by the train-test split. For the nominal

test set, 8 out of the 67 dataruns were hand-picked for diversity and held out from the training set.

Leaving out entire dataruns – not just shots – is important in order to estimate model performance

on new, unseen discharges in new configurations. Four dataruns from each run set were left out: for

DR1 08, 15, 23, and 33; for DR2, 02, 10, 19, and 31. As will be demonstrated in chapter 5, this test

set appears to characterize the model performance on held out data fairly well.

The dataset predominantly contains gas puff durations of 38 ms. Only six runs in the training

set have gas puff durations less than 38 ms: three have 5 ms and three have 10 ms, each having

mirror ratios 1, 3, and 6 but otherwise identical configurations in an attempt to see mirror-related
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interchange instabilities in higher-temperature, lower-collisionality regimes. The 20 ms gas puff

duration case is in the test set (DR2 31). This sampling bias towards the 38 ms gas puff duration

suggests poor model performance is to be expected in shorter gas puff regimes. The top gas puff

valve was operational for only the first nine runs of DR2.

Despite the best efforts to randomize the machine configuration, imbalance in the dataset will

be present because of the relatively small amount of samples for the given actuator space. The

distribution of Isat signals, averaged from 10 to 20 ms, can be seen in Fig. 4.6. The Isat distribution

is clearly different for DR1 and DR2, with DR1 having a much flatter distribution. These distributions

imply that if the model is constrained to sample from DR2 via the run set flag, then the model

is expected to predict a lower Isat value in general. When predicting from the model in general,

performance will likely be worse for Isat values ≳ 11 mA/mm2. The time-averaged Isat distribution

is dissimilar between DR1 and DR2: DR1 appears to have a more uniform distribution. Combining

the two datasets results in many Isat examples less than 2 mA/mm2 and a sharp decrease in number
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uniform distribution than DR2 does. Combining the two datasets results in many Isat examples near

0 mA/mm2 and a sharp decrease in number of examples above 10 mA/mm2. From these histograms

we expect our model to be biased towards fitting lower Isat values better, and to perform poorly in

cases with very high Isat values.
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Figure 4.7: Distribution of the x-coordinate in the profiles. The increase in data points between

roughly x ≈ 0 to 30 cm is from planes instead of lines. Based on this distribution, the performance

of the model is expected to be biased towards this central area.

of examples above 10 mA/mm2. Thus, we expect the model to perform better for smaller Isat values

than larger ones.

The mix of different probe movements also leads to some imbalance in the dataset. The

distribution of probe positions can be seen in fig. 4.7. Notably, samples appear to drop off

beyond +25 cm and -15 cm. Measurements over an x-y plane, constituting ≈ 64% of all shots, are

predominantly acquired overnight for maximal machine utilization. These longer dataruns lead to

particular machine configurations being overrepresented in the dataset.

The distribution of the selected machine settings for all the dataruns is enumerated in Table

4.1. Despite the randomization of the settings of 44 dataruns, the distribution is often uneven. The

remaining 23 non-random dataruns also contribute to the imbalance. For example, a source field

of 1 kG and discharge voltage of 112 show up disproportionately in the dataset because data were

collected at those settings while other equipment was being adjusted or calibrated.
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Table 4.1: Data breakdown by class and dataset (percent)

B source (G) B mirror (G) B midplane (G)

Train Test All Train Test All Train Test All

500 4.77 0 4.29 250 4.30 8.41 4.72 250 8.25 21.01 9.55

750 3.34 12.61 4.29 500 30.49 8.41 28.23 500 43.80 8.41 40.19

1000 43.13 78.99 46.78 750 6.68 16.81 7.72 750 6.62 52.19 11.27

1250 12.59 0 11.30 1000 28.85 57.97 31.82 1000 26.36 5.78 24.26

1500 19.23 0 17.27 1250 3.34 4.20 3.43 1250 9.24 0 8.30

1750 1.91 0 1.71 1500 26.34 4.20 24.08 1500 5.73 12.61 6.43

2000 15.03 8.41 14.35

Gas puff voltage (V) Discharge voltage (V) Axial probe position (cm)

70 12.11 16.81 12.59 70 12.22 8.41 11.83 639 12.48 8.41 12.06

75 6.68 0 6.00 80 5.25 0 4.72 828 17.07 36.28 19.03

80 11.46 8.41 11.15 90 2.86 8.41 3.43 859 12.48 8.41 12.06

82 41.49 57.97 43.17 100 3.34 8.41 3.86 895 33.01 30.10 32.71

85 14.13 0 12.69 110 8.77 0 7.87 1017 12.48 8.41 12.06

90 14.13 16.81 14.40 112 20.62 0 18.52 1145 12.48 8.41 12.06

120 3.82 8.41 4.29

130 0.95 0 0.86

140 2.86 8.41 3.43

150 39.30 57.97 41.20

Gas puff duration (ms) Vertical probe position (cm)

38 94.27 91.59 94.00 ≈ 0 36.26 46.08 37.26

< 38 5.73 8.41 6.00 ̸= 0 63.74 53.92 62.74
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Figure 4.8: An example of the y-axis profile before and after shifting the y-coordinate. The “before”

plot (top) is obviously asymmetrical about y=0. The shift needed to center was eyeballed from the

plot. Each line represents a different x position, from closest to the core (upper lines) to the edge

(lower lines).

4.6 Azimuthal asymmetry of probe data

Examining the data, it appears that the y coordinate is not centered properly, possibly because the

telescope used to align the probes is set incorrectly. Using profiles from planar data (see the “before”

plot in fig. 4.8), the y-coordinate was adjusted. The probes in DR1 were adjusted upward by 2 cm.

For DR2, the y-coordinate was adjusted separately for each probe. Port 17 was adjusted 6 cm up,

port 21 was adjusted 4 cm up, port 26 was adjusted 4.5 cm up, and port 33 was adjusted 3.35 cm up.

This degree of error is consistent with a centering scope crosshair angle error, which would cause a

larger absolute y-axis error closer to the cathode. An example of this y-axis error and the profile

after shifting the coordinates can be seen in fig. 4.8. It is likely that this y-axis offset applies to

other probes in the plasma, not just probes with Isat tips.
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4.7 Applying and improving the dataset

The two chapters following this detail machine learning studies utilizing this dataset, though only

using a subset of the diagnostics available. Significant opportunities remain for ML-based analysis

of the dataset, such as including additional diagnostics, in-situ diagnostic calibration (e.g., Isat or

Thomson scattering). Even though the diversity of the dataset is relatively high, many imbalances in

machine inputs remain. More data with additional (pseudo-)random samples from broader parameter

ranges would be very beneficial in improving downstream ML tasks. Pushing the boundaries of the

machine parameters could also lead to discovery and exploitation of new operational modes of the

LAPD which could prove beneficial.
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CHAPTER 5

Optimizing mirror configurations in the LAPD using machine

learning

This study demonstrates the efficacy of machine learning (ML)-based trend inference using data from

the Large Plasma Device (LAPD). Neural network (NN) ensembles with uncertainty quantification

are trained to predict time-averaged ion saturation current (Isat — proportional to density and the

square root of electron temperature) at any position within the dataset domain. Model-inferred

trends, such as the effects of introducing mirrors or changing the discharge voltage, are consistent

with current understanding. In addition, axial variation is optimized via comprehensive search

over Isat predictions. Experimental validation of these optimized machine parameters demonstrate

qualitative agreement, with quantitative differences attributable to Langmuir probe variation and

cathode conditions. This investigation demonstrates, using ML techniques, a new way of extracting

insight from experiments and novel optimization of plasmas. The code and data used in this study

are made freely available.

The primary goals of this work are to provide an example of a solid, validated machine learning

study and demonstrate how ML can be useful in understanding operating plasma devices.

5.1 Introduction

Understanding and controlling plasma behavior in fusion devices is necessary for developing

efficient fusion reactors for energy production. Because of the complex, high-dimensional parameter

space, traditional experimental approaches are often time-consuming and require careful planning.
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This work explores how machine learning (ML) techniques can accelerate this understanding by

elucidating the effect of machine parameters in a basic magnetized plasma device. Trend inference

is this process of relationship discovery. While ML methods, particularly neural networks (NNs),

have become increasingly prevalent in fusion research for control and stabilization, their application

to systematic trend discovery remains largely unexplored.

Many studies have used ML for profile prediction on a variety of tokamaks, particularly for real-

time prediction and control. For example, NNs were used to predict electron density, temperature,

and other quantities in DIII-D [4], and reservoir NNs have demonstrated the ability to quickly adapt

to new scenarios or devices [79]. Temporal evolution of parameters has been successfully modeled

using recurrent neural networks (RNNs)[24] for multiple devices, including the EAST[162] and

KSTAR tokamaks[146, 144]. These predictions enabled training of a reinforcement learning-based

controller[146, 144]. In addition, a decision tree-based controller was trained to maximize βN while

avoiding tearing instabilities[57] on DIII-D. Electron temperature profiles have also been predicted

using dense NNs on the J-TEXT tokamak [36].

A parallel focus has been on instability prediction and mitigation in tokamaks, particularly of

disruptions. Notable achievements in disruption prediction include RNN-based disruption prediction

[86] and random forest approaches[130], with a comprehensive review available by Vega et al [158].

Recent work has extended to active control, such as the mitigation of tearing instabilities in DIII-D

using reinforcement learning [145].

While ML has proven effective for prediction and control tasks, inferring trends using data-

driven methods has been relatively uncommon. Notable exceptions include finding scaling laws

on the JET tokamak[110] via classical ML techniques and the development of the Maris density

limit[105] which outperforms other common scalings (including the Greenwald density limit) in

predictive capability.

The use of machine learning and Bayesian inference in fusion research has been recently

reviewed by Pavone et al.[118]
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Outside of magnetized plasmas, the laser plasma community has embraced ML techniques for

various applications, enumerated in a review by Dopp et al.[43]. Data-driven plasma science in

general has been reviewed by Anirudh et al.[6] Notably, a similar quasi-random method (Sobol

sequences) was used to collect a spectroscopy dataset on a plasma processing device over diverse

machine settings [30]. This process is similar to what is performed in our work here, but a generative

variational autoencoder was instead trained to be used as an empirical surrogate model.

This work advances data-driven methods in plasma physics by taking these methods one

step further: instead of learning a model for particular task (e.g., disruption prediction or profile

prediction), we infer learned trends directly from the model itself.

The goal of this study is to develop a data-driven model that can provide insight into the effect

of machine parameters on plasmas produced in Large Plasma Device (LAPD) in lieu of a theoretical

model. In contrast with tokamaks and other fusion devices, the LAPD is particularly well-suited for

ML data collection because of its flexibility and high repetition rate. We demonstrate the capability

to infer trends in a particular diagnostic signal, the time-averaged ion saturation current (Isat), for

any mirror (or anti-mirror) field geometry in a variety of machine configurations. Langmuir probes

are commonly used to measure density, temperature, and potential in virtually all plasma devices in

low-temperature (less than 10s of an eV) regimes. The Isat signal in particular is almost always used

in the LAPD for calculating local plasma density.

This study marks two firsts in magnetized plasma research: using NNs to directly infer trends

and collecting data efficiently with partially-randomized machine parameters. We also demonstrate

optimizing LAPD plasmas given any cost function by minimizing axial variation in Isat. This global

optimization is only possible using ML techniques. This work demonstrates the usefulness of a

pure ML approach to modeling device operation and shows how this model can be exploited. We

encourage existing ML projects and experiments to consider this approach if possible. Acquiring

sufficiently diverse datasets may require assuming some risk because diverse data, such as discharges

from randomly sampled machine settings, may not be amenable to conventional analysis techniques.

All the processed data used for training the models in this study are freely available[152] (see
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Figure 5.1: A cartoon of the Large Plasma Device, the coordinate system used, examples of a mirror

and anti-mirror magnetic field configuration, and probe locations used in this study. The source,

mirror, and midplane regions are labeled; the three fields were programmed independently.

section 5.11). Other devices have also made data publicly available. In particular, data for H-mode

confinement scaling has been available since 2008[131], and more recently some MAST[78] and

all LHD[2] data are now publicly available.

5.2 Processing of Isat signals

The ion saturation current, denoted as Isat, is obtained by applying a sufficiently negatively bias to a

Langmuir probe to ensure the exclusive collection of ions. This collected current is proportional

to Sne
√

Te, where ne and Te are the electron density and temperature, and S is the effective probe

collection area. To account for differences in probe tip geometry, the Isat values are normalized to

area.

Isat measurements were averaged over 10 to 20 ms to exclude plasma ramp-up and fluctuations.

Example Isat probe data can be seen in fig. 5.3 along side gas puff timings. For the probe tip that
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Figure 5.2: Isat traces from the swept probe (port 26) from DR2 datarun 03, shot 1 of 6. The orange

curve is excluding times when a sweep is active on an opposing tip.

was on the same shaft as the swept probe (in DR2), the signal was instead averaged over when the

bias voltage on the swept tip was held constant at the lowest value. A 40 µs (250 sample) buffer was

used after the sweep was turned off to minimize the impact of transient conditions. A comparison

of the full trace and the trace with the swept portion excluded can be seen in fig. 5.2. Notably, the

measured Isat value does not attain a steady state before the discharge shuts off.

Profile evolution is not studied to minimize computational requirements. Isat characteristics vary

significantly between axial (z) position machine parameters. For Isat measurements on the same

probe as a Langmuir sweep (DR2 port 26, z=863 cm), the averaging process excludes the sweep

period with an additional 40 µs buffer.

While Isat exhibits a small degree of shot-to-shot variation, the present model only learns the

expected value, leaving distributional modeling to future generative approaches. An example of

these Isat profiles and the six-shot variance can be seen in fig. 5.4.
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three different dataruns. Note that some discharges do not achieve steady state in Isat.
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Figure 5.4: Examples of Isat profiles from DR2 run 15. The bars represent the minimum and

maximum of the six Isat measurements taken at that position.

5.3 Model development and training

5.3.1 Model inputs

Neural network inputs comprise 12 variables: source field, mirror field, midplane field, gas puff

voltage, discharge voltage, gas puff duration, probe coordinates (x, y, z), probe rotation, run set

identifier, and top gas puff flag. These variables can be interpreted as six control parameters, four

probe coordinates, and two flags. These inputs are mean-centered and normalized to the peak-to-

peak value with no outliers in the dataset. The baseline models trained in section 5.3.4 did not

contain the run set identifier or top gas puff flag.
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5.3.2 Training details

For initial experiments in training the model, a mean-squared error (MSE) loss is used:

LMSE =
1
m

m

∑
i=1

( f (xi)− yi)
2 (5.1)

where xi represents the input vector for the ith example, yi the target measurement, m the batch size,

and f the NN. During training, overfitting was assessed via the validation set MSE with a traditional

80-20 train-validation random split. Unless stated otherwise, a dense neural network, 4 hidden

layers deep and 256 units wide (201,218 parameters for β -NLL loss, 200,962 parameters for MSE

loss), was trained with AdamW using a learning rate of 3× 10−4. Leaky ReLU activations (the

nonlinearities in the NN) and adaptive gradient clipping[141] (cutting gradients norms above the

90th percentile of recent norms) were used to mitigate vanishing gradients and mitigate exploding

gradients, respectively. The models were evaluated after training concluded at 500 epochs.

5.3.3 Validating the training pipeline

ML training processes are relatively simple but bugs, particularly in the data pipeline, can be

insidious and can affect final model performance even though training looks fine. Here we validate

the data pipeline (which should be performed in every ML study) to verify that the model is training

and expected and that there is no accidental data leakage between the train and test sets. Andrej

Karpathy’s advice for training neural networks [85] was used as a template for verifying the training

procedure used in this project. The data fed into the model immediately before the forward pass

(and subsequent backpropagation) was stored and verified: the data are correctly randomly shuffled

in each batch. Each epoch contains the same random shot order. To validate the data pipeline,

a simple dense model (4 layers, 512 wide with one output; 794113 parameters, tanh activations)

was trained. The model is also intentionally overfit on a single batch (128 examples) of training

data to ensure that training progresses as expected. A deep double descent is observed as expected

[111, 136]. Training on a batch of 8 examples reaches ≈ 0 training loss after 50 steps. Plots of the

train and validation losses can be seen in Fig. 5.5.
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Figure 5.5: Training and validation losses when overfitting the model. A deep double descent in the

validation losses is observed when fitting a single batch of 128 examples. The 8-example batch hits

near-zero loss after 50 steps. This process verifies our training process is functioning as expected.

The spikes are from exploding gradients which can be mitigated by clipping the gradients. A model

trained on blank data is also shown as the black dotted line.

Multiple models were trained with varying depths and widths to verify that training loss

decreases with increased model capacity. Doubling the layer width from 512 to 1024 moderately

decreases the training loss; doubling the depth of the network from 4 to 8 layers has a larger impact.

Increasing the width further to 2048 and depth to 12 layers has a dramatic impact on training loss,

so this model and dataset are behaving nominally. The model pipeline is training and performing as

expected, so we proceed.

5.3.4 Baselines for mean-squared error

A model was first trained with zeroed-out inputs as a baseline and to validate the data pipeline. This

model effectively has only a single, learnable bias parameter at the input. This process yields a
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validation loss (simply MSE in this case) of 0.036.

A linear model obviously cannot fit the dataset (see the nonlinear shape of the profiles in fig.

5.4). However, a simple (and mostly linear) model can provide a performance baseline to help

spot bugs when training more complex models. Since the x- and y- profiles have a approximate

tanh shape, a feature is added at the linear model input stage for the x and y coordinates: xtanh =

c · tanh(|x+ s| ·a+b) where s,a,b,c are trainable parameters (independent for each coordinate; c

is superfluous). This function was chosen to give the linear model the capability of expressing

tanh-like curves. The performance of the linear model on DR2 data, with and without the tanh

features, can be seen in fig. 5.6. This baseline linear-like model reaches a training and validation

loss of around 0.011, with the RMSE =
√

loss∼ 0.1. The linear-only model is marginally worse

with losses at around 0.014.

This feature engineering-like approach can continue. For example, the width of the profile is

largely controlled by magnetic field configuration of the device, particularly by
√

Bmidplane/Bsource.

This behavior can be added to this model, either as a new feature or as a custom relationship

in the model. Note that, as seen in fig. 5.6, the width of the profile also depends on the axial

coordinate. Combined with other coordinates and actuators, like discharge voltage and gas pressure,

the number of possible features or function space grows combinatorially, making this custom fitting

process difficult and tedious to design and test by hand. The obvious solution would be to use

symbolic regression or fitting to a function library which may be ideal methods if simple profile

prediction were the final goal. However, we are ultimately interested inferring trends in a much

more complex input space where neural networks are more flexible and accurate. If NNs do face

generalization issues, symbolic regression or a SINDy-like approach can used instead, albeit with

limited applications. Symbolic methods are appealing because the fits are simple. However, even

though a simple equation may fit the data well, it does not necessarily provide insight or relate to

the underlying physics; using a freeform fitting function like a neural network is more appropriate

in this use case.

A summary of these baselines is seen at the top of Table 5.1.
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Figure 5.6: Isat profiles and predictions for ports 17 and 33 based on inputs from DR2 run 08 using a

liner and linear-with-tanh models. DR2 run 08 is in the training set. The “data” points are averaged

over six shots. Run 08 was chosen for its representative performance; ports 17 and 33 were chosen

to demonstrate the maximal axial variation (across 511 cm). These models fail to describe the data

accurately.
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Table 5.1: Summary of test set losses for different training data and ensembles

Model MSE ×10−3

Zeroed-input 36 (validation)

Linear model 14 (validation)

Linear with tanh features 11 (validation)

9 dataruns 7.0

19 dataruns 6.9

29 dataruns 4.2

39 dataruns 4.1

49 dataruns 3.4

DR1 only 6.4

DR2 only 5.4

Full set, large model 2.8

Full set average 3.6±0.56

Full set ensemble 2.9±1.1

“Run set” flag average 2.1±0.15

“Run set” flag ensemble 1.9±0.64

“Top gas puff” flag 1.8
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5.3.5 Effects of training set and model sizes

To study the effects of reduced diversity, the number of unique dataruns in the training set was

systematically reduced while evaluating on a fixed test set. The test set loss monotonically increased

with this decrease in datarun count. Part of this decrease in performance may be caused by a

simple reduction in training set size. In addition, models were individually trained and evaluated

on DR1 only or DR2 only. When evaluated on the left-out run set, the test set losses were high,

near or above the zero-input baseline of 3.6×10−2. This result suggests that both run sets contain

significant information missing in the other, and training on both provides beneficial information on

the structure of the Isat measurement despite different probe calibrations and cathode state.

A larger model, consisting of a 12-deep 2048-wide dense network, was trained on the full

training dataset, evaluated at 30 epochs. This larger model yielded a test MSE of 2.8× 10−3,

indicating that these NNs are behaving as expected. Longer training or larger models may yield

better test set results, but will likely not come close to the training and validation losses which are

on the order of 10−5. Combined models with differing initializations (an ensemble), were trained to

measure the MSE variance over model parameters which was about 16%. When the Isat predictions

were averaged, the test set MSE was 2.9± 1.1× 10−3, achieving the best performance for that

model size. These test set losses are also seen in Table 5.1.

5.3.6 Improving performance with machine state flags

Data from DR1 and DR2 were collected 14 months apart leading to differing machine states. In DR1,

only one turbo pump was operating leading to much higher neutral pressures than in the DR2 run

set. A new parameter (mean-centered and scaled) was added to the inputs to distinguish between

these two run sets. All the predictions in this study use the DR2 run set flag (a value of 1.0) because

turning off the turbopumps is not a commonly desired mode of operating the LAPD. The inclusion

of this parameter also provides the model the ability to distinguish between the probe calibration

differences between DR1 and DR2. An ensemble prediction with this run set flag brings the test set
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MSE down to 1.9×10−3.

A flag indicating when the top gas puff valve was enabled in DR2 was also added to all training

data, allowing the model to further distinguish between different fueling cases. The addition of this

flag incrementally improved test set MSE to 1.8×10−3. The effect on MSE on the inclusion of

these new parameters is compared to the performance of other models in Table 5.1.

5.3.7 Learning rate scheduling

Modifying the learning rate over time (scheduling) is known to improve model learning. The

following schedules were compared: constant learning rate (γ = 3× 10−4), γ ∝ epoch−1, γ ∝

exp(−epoch), and γ ∝ epoch−1/2. The epoch is the training step divided by the number of batches

in one epoch, so “epoch” in this case takes on a floating-point value. γ ∝ epoch−1 appears to give

the best test set loss by a test MSE difference of 1×10−4, and any schedule beats a constant learning

rate by a difference of 2−4×10−4.

5.4 Uncertainty quantification

5.4.1 β -NLL loss

Instead of predicting a single point, the model can predict a mean µ and variance σ2 using the

negative-log likelihood (NLL) loss [114, 95] by assuming a Gaussian likelihood. An adaptive

scaling factor StopGrad(σ2β

i ) is introduced that can be interpreted as an interpolation between an

MSE loss and Gaussian NLL loss, yielding the β -NLL loss:

Lβ−NLL =
1
2

(
logσ

2
i (xn)+

(µi(xn)− yn)
2

σ2
i (xn)

)
StopGrad

(
σ

2β

i

)
(5.2)

for example n and model i, with an implicit expectation over training examples. β = 0 yields the

original Gaussian NLL loss function and β = 1 yields the MSE loss function. This factor improves
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MSE performance by scaling via an effective learning rate for each example (which necessitates the

StopGrad operation) [142], and improves both aleatoric and epistemic uncertainty quantification

[155]. β = 0.5 was used by default in this study. This β -NLL loss function also improved training

stability.

This NLL-like loss assumes the prediction – the likelihood of y given input x: p(y|x) – follows

a Gaussian distribution. Treating each prediction as an independent random variable (considering

each model in the ensemble is sampled from some weight distribution θ ∼ p(θ |x,y)) and finding the

mean of the random variables yields a normal distribution with mean µ∗(x) = ⟨µi(x)⟩ and variance

σ2
∗ = ⟨σ2

i (x)+µ2
i (x)⟩−µ2

∗ (x) where ⟨⟩ indicates an average over the ensemble.

The loss function for one of the NNs in an ensemble is seen in fig. 5.7. The MSE decreases

monotonically for the training and validation set, but does not for the test set. The loss function can

no longer be interpreted as a log-likelihood because of the effective per-example learning rate set by

the β term in the loss (eq. 5.2). Note that early stopping (at around 8 epochs) would improve the

test set loss, but the MSE would still be several factors higher than after 500 epochs. Early stopping

was not explored in this study.

The ensemble predictive uncertainty can be decomposed into the aleatoric and epistemic compo-

nents [155]: the aleatoric uncertainty is ⟨σ2
i (x)⟩ and the epistemic uncertainty is ⟨µ2

i (x)⟩−µ2
∗ (x) =

Var[µi(x)]. The intuition behind these uncertainties is that the random fluctuations in the recorded

data are captured in the variance of a single network, σ2
i . If the choice of model parameters were

significant, we would expect the predicted mean for a single model, µi, to fluctuate as captured by

Var[µi(x)].

5.4.2 Cross-validation MSE

For cross-validation, multiple train-test set pairs were created. Test set 0 comprises deliberately

chosen dataruns to encompass a diverse set of machine settings and probe movements. The other

six datasets were compiled with randomly chosen dataruns (without replacement) while keeping
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Figure 5.7: The loss and MSE for the training, validation, and test sets over the entire training

duration of 500 epochs. The inclusion of the β term in the loss function – interpreted as a per-

example learning rate – makes the loss function no longer interpretable in simple terms. The

mean-squared error benefits from longer training for all sets.
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the number of dataruns from DR1 and DR2 equal. Seven model ensembles (5 NNs per ensemble

– 35 NNs total) were trained to evaluate the effect of test set choice on model MSE. The test set

MSE performance can be seen in fig. 5.8, and the training MSE performance in fig. 5.9. The

median ensemble test set MSE for these seven sets was 2.13× 10−3 with a mean of 3.6× 10−3.

The handpicked dataset had an ensemble test set MSE of 1.85×10−3, indicating that the choice of

dataruns was adequately representative. This median MSE will be used to estimate model prediction

error in addition to uncertainty quantification. This cross-validation also provides an error estimate

if the models were to be trained on all dataruns. Ensembles always out-performed the average error

of single-model predictions.

All validation set MSEs fall between 1 and 6× 10−5, with the average training MSE falling

within that range as well. These MSEs indicate that the model is able to fit the training data to a

high degree of accuracy regardless of which dataruns are held out. The loss and MSE curves over

training epochs can be seen in the appendix in fig. 5.7.

5.4.3 Model calibration via weight decay

The predicted uncertainty may not provide an accurate range of Isat values when compared to the

measured value. Calibrating the model means changing the predicted uncertainty range so that

the measured values fall within that range according to some distribution, such as a Gaussian

in this case. One of the ways assessing this calibration is by the z-score of predictions, where

zn = (xn−µn)/σn(xn) for example xn, predicted mean µn, and standard deviation σn. Perfect model

calibration would lead to identical z-score distribution N (µ = 0,σ = 1) for the training a test sets.

When evaluated on the training set, the distribution should be a Gaussian with a standard deviation

of 1. The z-score distributions for the train and test sets with a model weight decay of 0 can be seen

in fig. 5.10.

Increased weight decay can lead to better model calibration [67]. Weight decay penalizes large

parameter values by adding the L2 norm of model weights to the loss. Model ensembles were

115



0 1 2 3 4 5 6
Test set number

0.000

0.002

0.004

0.006

0.008

0.010

M
SE

13419 20130 26088 17322 14411 6685 14784

Model performance over different test sets
Mean
Median
Average
Ensemble

Figure 5.8: Model performance as measured by MSE over test sets with different dataruns. Test set

0 is the hand-picked dataset, and the rest were randomly compiled without replacement (though

separate for DR1 and DR2). The number at the bottom of the bar chart is the number of shots in the

testing set. The median test set performance is very close to the hand picked (set 0) performance.

Ensembles always out-perform the average single-model prediction.
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Figure 5.9: See caption for fig. 5.8. Note that the training loss is dramatically less than the testing

loss, but otherwise there is no discernible trend.
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Figure 5.10: Z-scores for the training and testing set for the model with a weight decay coefficient

λ of zero. The magnitude of counts for the test set is scaled up by a factor of 8.8 (the train-to-test

example ratio). The histograms are clipped between z of -8 and 8 with a bin width of 0.25; the spike

at the negative side of the test set histogram is from the long tail.
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Figure 5.11: Model performance and calibration for different weight decays. Highly biased models

are better calibrated, but come at great expense of mean prediction error. At the weight decay value

of 50, the model has worse error than a linear model. Note the linear scale below 10−2.

trained with weight decay coefficients between 0 and 50 to determine the best calibrated model

determined by the distribution of z-scores of the training and test sets. The results of this weight

decay scan are seen in Fig. 5.11. Increasing the weight decay increases the test MSE and decreases

its z-score standard deviation. This large standard deviation is caused by outliers. Excluding

z-scores magnitudes above 10, or 4.4% of the test set, yields a standard deviation of 2.53. This

long tail indicates that the distribution of predictions on the test set is not Gaussian. Nonetheless,

the trend remains that increasing weight decay leads to smaller test set z-score standard deviations.

However, the test set MSE increases after a weight decay of 1. This increase in test MSE implies

that the model is making less accurate predictions but is better calibrated. Highly biased models are

better calibrated, but come at great expense of mean prediction error. At the weight decay value of

50, the model has worse error than a linear model. Despite the attempts using weight decay, the

model never becomes well-calibrated: the predicted uncertainty is always too low by a factor of 2 to

5.
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Figure 5.12: Model extrapolation performance (top plots) with uncertainty (bottom plots) for a

model ensemble trained on a β -NLL loss function. DR2 run 10 was chosen as an illustrative example.

The relative uncertainty appears to be more useful when zero weight decay (λ = 0, left) is used: the

uncertainty increases when the model is predicting outside its training data along the x-axis.

Despite the better calibration, the uncertainty predicted by a model with a large weight decay

is decidedly worse: the uncertainty is similar across an entire profile, and when projected beyond

the training data, the total uncertainty remains largely constant as seen in Fig. 5.12. The zero

weight decay model exhibits relatively increasing uncertainty beyond the bounds of the training

data. Although not well-calibrated, this uncertainty can provide a hint of where the model lacks

confidence relative to other predictions, even though the uncertainty is much less than it should be.
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5.5 Evaluating model performance

Model performance is evaluated in three ways by comparing against intuition from geometry, an

absolute measurement, and extrapolated machine conditions.

5.5.1 Checking geometrical intuition

Assuming magnetic flux conservation, we know that modifying the mirror geometry can control the

effective width of the plasma. One way to check that the model is learning appropriate trends is to

check with this intuition. If the magnetic field at the source is not equal to the field at the probe, the

probe will see the plasma expanded (or contracted) by roughly a factor of
√

Bprobe/Bsource. The

cathode is about 35 cm in diameter, so a magnetic field ratio of 3 would give produce a plasma

approximately 60 cm in diameter. All the probes used in this study are in or very close to the

zero-curvature midplane region of a mirror.

To check this intuition, the model is given the following inputs: Bsource=500 G, Bmirror=1500 G,

Bmidplane=500 G, discharge voltage=110 V, gas puff voltage=70 V, gas puff duration=38 ms, run set

flag=DR2 and top gas puff=off. The discharge voltage and gas puffing parameters were arbitrarily

chosen. The x coordinate is scanned from 0 to 30 cm, and the z coordinate from 640 to 1140 cm.

This discharge is then modified by separately changing Bsource to 1500 G and Bmidplane to 750 G

(M=1.5). The x profiles at the midplane (z=790 cm) of the reference M=3 prediction, source field

change, and midplane field change, all scaled to cathode radius, can be seen in Fig. 5.13. Changing

the source field to 1500 G increases the Isat towards the edge of the plasma, as expected. When the

midplane field is increased, the Isat values decrease at the edge and increase at the core (x=0 cm),

implying a thinner plasma column and is consistent with previously measured behavior. When only

the mirror field is modified (not shown), the strongest effect on Isat is on or near x=0 cm, and the

plasma column width does not appear to appreciably change.
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Figure 5.13: Plot of various mirror configurations scaled to the cathode radius xc = 17.5 cm at the

midplane (z=790 cm). When scaled according to the expected magnetic expansion, the profiles

generally agree. The smaller the plasma diameter (and thus smaller volume), the higher the peak in

Isat at the core, as expected.
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5.5.2 Directly comparing prediction to measurement

Isat measurements were taken with the following LAPD machine settings: Bsource=1250 G, Bmirror=500

G, Bmidplane=1500 G, discharge voltage=90 V, gas puff voltage=90 V, gas puff duration=38 ms, run

set flag=DR2 and top gas puff=off. These settings were from a previous discharge optimization

attempt. The probes utilized were the permanently-mounted 45◦ probe drives. These probes were

known to have identical effective areas relative to each other from the previous experiment and from

analyzing the discharge rampup.

Because of data acquisition issues, only a single useful shot was collected at a nominal -45◦

angle (relative to the x-axis) 10 cm past the center (x=0 cm, y=0 cm) of the plasma on three probes

at z-positions of 990, 767, and 607 cm (ports 22, 29, and 34, respectively). The probe drives were

slightly uncentered, leading to the real coordinates of the probes to be around x = 9.75 cm and

y =−8.4 cm. Note that the model can predict anywhere in LAPD bounded by the training data,

so off-axis measurements are not an issue. The resulting predictions using these coordinates and

machine conditions can be seen in Fig. 5.14. The model reproduces the axial trend well, but slightly

underestimates Isat on an absolute basis. However, given the lack of absolute Isat calibration and

variable machine state, the agreement of the absolute Isat values may be coincidental. Nevertheless,

the trend exhibited by this validation study matches the predicted trend and increases our trust in

model predictions.

An additional validation datarun was performed. For this run, the discharge voltage was

increased to 160 V, and the source field changed to 822 G. The training data contains discharge

voltages up to 150 V, so this case tests the extrapolation capabilities of the model. The comparison

of model predictions and the measured data can be seen in Fig. 5.14. As stated earlier, the absolute

uncertainty provided of the model is not calibrated. However, note that the level of uncertainty

provided by the model, as well as the large spread in model predictions, are much greater than seen

in the interpolation regime (Fig. 5.14) and eclipses the cross-validated test set root mean squared

error (RMSE). We conclude that this model has good interpolation capabilities, but extrapolation –
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Figure 5.14: Top: data collected at off-axis positions around x = 9.75 cm and y = −8.4 cm are

compared with predictions from the machine learning model at the same points in addition to two

interpolating predictions. The model predicts the trend well, but underestimates Isat in general. The

shaded orange region is the total model uncertainty (σ =
√

Var). Bottom: Measured vs predicted

Isat values for an odd machine configuration with Bsource=822 G and discharge voltage=160 V. The

training data only covers discharge voltages up to 150 V The machine was also in an odd discharge

state, so it’s no surprise that the predicted uncertainty bounds are very large (even greater than the

test set RMSE value) and that accuracy suffers.
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as with any model – remains difficult.

5.5.3 Comparison with Thomson scattering

The z-axis interpolation for dataruns in the training and test sets can be evaluated using the Thomson

scattering (TS) diagnostic. The TS measurement is taken 8 ms into the discharge for DR1 12 ms into

the discharge for DR2, but in this study the measured and predicted Isat are instead averaged over 10

to 20 ms. The Thomson scattering measurement is compared in with DR1 and DR2 in figs. 5.16a and

5.16b, respectively. The linear slope fits do not take model error into account In DR1, Isat predictions

disagree with the Isat derived from TS. Measurements from probes, when nearby the TS beam, can

also have very different values from the TS-derived measurement. The TS density measurement

may suffer from misalignment, and has not been calibrated since January 2022, roughly a year

(DR1) or two (DR2) before these data were taken. The density measurement is photon counting and

requires absolute calibration. This disagreement likely comes from this error in density because

fitting the temperature is robust to absolute calibration errors. In addition, the Isat is time-varying;

the average may differ substantially from single points in time earlier in the discharge.

All these issues considered, the model predictions roughly agree with TS on average in DR1,

which is encouraging because the TS beam at port 32 (671 cm) is substantially further from the

closest probe at port 27 (831). We should expect rough agreement or a slight underestimate on

average based on the skewed test-set z-score seen in fig. 5.10). DR2 has a probe past the TS beam at

port 33 (639 cm), but the Isat measurement rarely agrees with Thomson. Because of this density

error and measurement time discrepancy, we conclude that the TS diagnostic may not be a good way

to verify the predictions of the model. Note that, when calibrated, TS agrees with Isat measurements

quite closely as seen in the LAPD Thomson scattering paper [62].
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Figure 5.15: Comparison of original DR2 profiles with the profiles from the optimization dataset

(DROpt) for the same machine configuration. The Isat values in the DROpt dataset are not calibrated

in this plot, indicating significant variation in probe calibration in this DROpt dataset.

5.6 Effect of Isat calibration

The Langmuir probes did not seem to be behaving correctly when the optimization validation data

were taken. The probes showed an increasing Isat profile when moving further from the cathode

in the lowest gas puff condition, which is at odds with previous measurements and intuition. An

example of this discrepancy can be seen in Fig. 5.15, where a run from the original testing set

(specifically DR2 run 10) is duplicated. The probes for the validation run can be corrected for by

either assuming the 5 ms gas puff run has a flat axial profile or by normalizing the probes to the DR2

run 10 axial profile. Calibrating the probes using the DR2 run 10 reference was the best way to go

because it corrects for both probe discrepancies as well as changes in the condition (or emissivity)

of the main cathode.
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(a) Thomson scattering (TS) 8 ms into the discharge compared to the model

predictions (10 to 20 ms averaged). Broadly speaking, the TS measurement

roughly agrees with the model estimate on average.
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(b) Thomson scattering (TS) 12 ms into the discharge compared to the model

predictions (10 to 20 ms averaged) and Isat measurements one port away.

The TS underestimates Isat in general.

Figure 5.16
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5.7 Inferring trends

A systematic study of the impact of discharge voltage on Isat profiles has not been conducted using

conventional techniques. Collecting both z- and x-axis profiles over a wide range of discharge

voltages would take a considerable amount of time, mostly from the requirement to dismount

and reattach the probes and probe drives along the length of the LAPD. This study has now been

performed using the learned model, circumventing these time-consuming challenges. Model input

parameters were chosen to be common, reasonable values: 1 kG flat field, 80 V gas puff, 38 ms gas

puff duration, run set=DR2, and top gas puff off. The 38 ms puff is used in these predictions because

it is the most common gas puff duration in the training set – the model is biased in favor of this gas

puff setting. The results of changing the discharge voltage only can be seen in fig 5.17. Notably, the

Isat increases across both axes. Steeper axial gradients are seen with lower discharge voltages, but

peaked x-profiles are seen at higher discharge voltages. The area closer to the source region (+z

direction) appears to have a steep drop but flatter profiles down the length of the machine.

Unfortunately the discharge current was not included as an output in the training set. Otherwise

the effect of changes in discharge power, rather than simply voltage, could be computed. The

discharge current – and thus discharge power – is set by cathode condition, cathode heater settings,

and the downstream machine configuration, and thus cannot be set to a desired value easily before

the discharge. Discharge voltage, however, can remain fixed.

Of particular interest for some LAPD users is achieving the most uniform axial profile possible.

We explore this problem in the context of mirrors. The gas puff duration is known to be a large

actuator for controlling density and temperature and so is explored as a way of shaping the axial

profile. We predict discharges with a flat 1 kG field with the probe in the center. The discharge

voltage was set at 110 (a reasonable, middle value) with the run set flag=DR2 and top gas puffing=off.

The inferred effect of gas puff duration on the axial gradient and axial gradient scale length can

be seen in Fig. 5.18. Care was taken to handle the aleatoric (independent) uncertainty separately

from the axially-dependent epistemic uncertainty. As seen in the figure, the mean axial gradient
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Figure 5.17: The z profile at x=0 cm and x profile at z=1140 cm for different discharge voltages.

The Isat decreases with increasing voltage, and the error (filled regions) stays roughly the same, but

in general increase slightly towards the cathode and at higher discharge voltages.
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Figure 5.18: ML prediction: mean axial gradients decrease with decreased gas puff duration. Five

durations are plotted between 5 and 38 ms (which are the bounds of the training data), evenly spaced.

The gradient scale length also increases, indicating that the gradient change was not solely caused

by a decrease in the bulk Isat.

decreases when the gas puff duration is shortened. The gradient scale length also increases, so the

mean gradient is not decreasing simply because the bulk Isat is decreasing. This result suggests that

the gas puff duration may be a useful actuator to consider when planning future experiments.

These applicability of these results are somewhat muted because the gas puff duration was not

chosen randomly in the training discharges. Given this lack of data diversity, the accuracy and

applicability of this study must be interpreted cautiously. When a model is trained on all data

available (using the cross-validated test set MSE as a guide for error), which includes the 20 ms

gas puff case, the predicted gradient scale length decreases uniformly across the duration scan by 1

meter. The fact that the trend remains intact when an additional, randomized intermediate gas puff

case is added gives confidence in the predictions of the model despite the lack of data diversity.
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5.8 Optimizing profiles

One particular issue seen in LAPD plasmas is sharp axial density and temperature gradients.

Some experiments require flat gradients, such as Alfvén wave propagation studies. We explore

optimizing the axial Isat variation as an approximation to this problem. In addition, in this case

the optimization problem is used as a tool to evaluate the quality of the learned model. This

optimization is a very demanding task because the inferred trends along all model inputs must

be accurate simultaneously. Constraints on this optimization further increase the difficulty of the

problem. Success in optimization provides strong evidence that the model has inferred relevant

trends in predicting Isat. We quantify the uniformity of the axial profile by taking the standard

deviation of Isat of 11 points along the z-axis (x,y = 0). The required LAPD state for attaining the

most uniform axial profile can be found by finding the minimum of this standard deviation with

respect to the LAPD control parameters and flags:

Inputs = argmin
Inputs̸=z

sd
z
(Isat|x=0) (5.3)

The largest axial variation can likewise be found by finding the maximum. The model inputs used

for this optimization can be found in Table 5.2.

For this optimization we use an ensemble of five β -NLL-loss models with weight decay λ = 0.

The λ = 0 model is used because it appears to give the most useful uncertainty estimate (seen in

Fig. 5.12). The optimal machine actuator states are found by feeding a grid of inputs into the neural

network. This variance estimate is not well-calibrated: the error of the predictions on the test set

falls far outside the predicted uncertainty. However, this uncertainty can be used in a relative way:

when the model is predicting far outside its training range, the predicted variance is much larger.

The ranges of inputs into this model are seen in Table 5.2. These inputs yield 127,234,800 different

machine states (times five models) which takes 151 seconds to process on an RTX 3090 (≈ 4.2

million forward passes per second) when implemented in a naive way. The number of forward

passes can be reduced by a factor of 51 if the x value is set to 0 cm. Note that gradient-based

methods can be used for search because the network is differentiable everywhere but this network
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Table 5.2: Machine inputs and actuators for model inference

Input or actuator Range Step Count

Source field 500 G to 2000 G 250 G 7

Mirror field 250 G to 1500 G 250 G 6

Midplane field 250 G to 1500 G 250 G 6

Gas puff voltage 70 V to 90 V 5 V 5

Discharge voltage 70 V to 150 V 10 V 9

Gas puff duration 5 ms to 38 ms 8.25 ms 5

Probe x positions -50 cm to 50 cm 2 cm 51

Probe y positions 0 cm – –

Probe z positions 640 cm to 1140 cm 50 cm 11

Probe angle 0 rad – –

Run set flag off and on 1 2

Top gas puff flag off and on 1 2
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and parameter space is sufficiently small that a comprehensive search is computationally tractable.

Like any optimization method, the results may be pathologically optimal. In this scenario, the

unconstrained minimal axial variation is found when the Isat is only around 1 mA/mm2, which is

quite small and corresponds to 1-2×1012 cm−3 depending on Te. The inputs corresponding to this

optimum are given in the second column of Table 5.3. This density range is below what is required

or useful for many studies in the LAPD.

Since many physics studies require higher densities, we constrain the mean axial Isat value to be

greater than 7.5 mA/mm2 (roughly 0.5-2×1013 cm−3). The “run set flag” is set to “on” for cases to

be validated (bolded in Table 5.3) because we wish to keep the turbopumps on to represent typical

LAPD operating conditions. In addition the “top gas puff flag” was set to ‘off’ to minimize the

complexity of operating the fueling system on followup dataruns and experiments. Turning the

top gas puff valve on is predicted to decrease the average Isat by −2 mA/mm2 for strongly varying

profiles, but otherwise the shapes are very similar. The inputs corresponding to the maximum and

minimum axial variation under these constraints can be seen in columns 3 and 4 of Table 5.3. For

contrast we also consider what machine settings would lead to the greatest axial variation. The

results of both of these optimizations can be seen in Fig. 5.19. The optimizations yield profiles that

have the largest Isat values closest to the cathode, which is expected.

The prediction for an intermediate axial variation case is also seen in Fig. 5.19. The intermediate

case was chosen as somewhere around half way between the strongest and weakest case with a

round index number (15000, in this case). The parameters for intermediate case are also enumerated

in Table 5.3.

The predicted configurations with the run set flag on and top gas puff flag off (bolded in Table

5.3 were then applied on the LAPD. The data collected, compared with the predictions can be seen

in Fig. 5.19.

For the optimized axial profiles, the absolute value of the Isat predictions compared to measure-

ment do not agree. All of the predicted profiles have overlapping predictions (within the predicted
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Figure 5.19: Axial profiles, predicted and measured, for the optimized weakest (blue), intermediate

(green), and strongest (orange) cases. a. The shaded region covers the mean prediction ± one

standard deviation, and the dashed lines are ± the median cross-validation RMSE values. b. The

measured Isat values are calibrated to DR2 run 10 (solid lines), or using triple probe Te measurements

on the probe and linearly extrapolating the interferometer measurements (dotted lines). The absolute

values disagree between the predicted and measured values, but axial trends are consistent with the

optimization.
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Table 5.3: Machine inputs and actuators for optimized axial profiles

Input or actuator Weakest Weakest Strongest Intermediate

Isat constraint (mA/mm2) Isat = any Isat > 7.5 Isat > 7.5 Isat > 7.5

Source field 750 G 1000 G 500 G 2000 G

Mirror field 1000 G 750 G 500 G 1250 G

Midplane field 250 G 250 G 1500 G 750 G

Gas puff voltage 70 V 75 V 90 V 90 V

Discharge voltage 130 V 150 V 150 V 120 V

Gas puff duration 5 ms 5 ms 38 ms 38 ms

Run set flag on on on on

Top gas puff flag on off off off

error) at the region furthest from the cathode, but the measured values do not show that behavior.

Although the mean Isat value was constrained to be greater than 7.5 mA/mm2, the measured mean

was 2 mA/mm2 for the weakest case.

The important result is that the optimized LAPD settings, when implemented on the machine,

do yield profiles with strong, intermediate, and weak axial variation. Although the minimum-

Isat constraint was violated for the case of weakest axial variation case, this optimization would

nonetheless be very useful for creating axial profiles of the desired shape.

There are three contributing factors to the mismatch of the ML-predicted values and the real

measured values. First, the condition of the machine, such as the cathode emissivity or temperature

or the downstream neutral pressure, are unquantified and cannot be compensated for in data

preprocessing or in the model itself. Second, the calibration of the Langmuir probes could differ

substantially between runs. The probes in the training data run sets (DR1 and DR2) were well-

calibrated to each other within the run set, but were not absolutely calibrated. The probes used

for verifying the optimization were not calibrated. A rough calibration was performed by linearly

extrapolating interferometer measurements and using triple probes (dotted lines on the right panel
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in Fig. 5.19). A configuration identical to DR2 run 10 was also measured to simultaneously correct

cathode condition and probe calibration (solid lines on the right panel in Fig. 5.19). Langmuir probe

calibration is discussed further in Appendix 5.6. Third, the original dataset may not have sufficient

diversity to make accurate predictions on such a constrained optimization problem.

If this optimization were performed using the dataset instead of the model, the constrained

search would encompass just 10084 shots out of the 131550 shots total in the training dataset, or

around 7.7%. Including the on-axis constraint reduces the number of shots down to 303 (270 in

the training set), or 0.23% of all shots in the dataset. We conclude that this optimization of an

arbitrary objective function, as done here, would be intractable using traditional, non-machine

learning techniques because orders of magnitude more dataruns would need to be collected.

Optimization requires correctly learning the trends of all inputs and how they interact. In

addition, as seen from the shot statistics, the model was trained on very few shots in the constrained

input and output space. These two factors – the need for the model to learn all trends and the

constrained search space – combine to make an incredibly difficult task that functions as a benchmark

for the model. These factors considered, it is not surprising that the model incorrectly predicts the

absolute value. The uncertainty predicted by the model, though not well-calibrated, was nonetheless

very large compared to the median test set RMSE. The model did predict the trends correctly,

however; the optimized, measured profiles were strong, intermediate, or weak.

We did not check to see if the predicted optima were actually true optima: an approximation of

the local derivative using a finite-difference technique would require much more run time on the

LAPD than was available.

135



5.9 Discussion

5.9.1 Key achievements

To my knowledge, this work is one of the first instances in which machine learning has been used to

infer specific trends and optimize profiles in magnetized plasmas. Three examples of trend inference

were shown in this study: influence of magnetic geometry on plasma width, changes in the axial and

radial profiles with changing discharge voltage, and the relationship of gas puff duration with axial

gradient scale length. In addition, the axial profile was optimized by minimizing (or maximizing)

the axial standard deviation. There is no other way of simultaneously uncovering many trends or

finding optima without using an ML model trained on a diverse dataset. Traditionally, such studies

would require extensive scans over grids to map the parameter space, but here it was accomplished

with a relatively small amount of data.

The trends inferred in this work, such as changing discharge voltages, gas puff durations, or

mirror fields, would traditionally require a grid scan (varying one parameter at a time) in LAPD

settings space. Here instead we are able to extract any trend covered by the training set with only

a minimal amount of machine configurations sampled. Both data collection runs lacked absolute

Isat calibration and had potential differences in cathode condition. Despite these issues the model

learned trends that were exploited via optimization.

In addition, this work demonstrates uncertainty quantification broken down into epistemic and

aleatoric components by using ensembles and a negative-log likelihood loss. This uncertainty

estimate is useful in gauging relative certainty between different predictions of the model which

increases confidence in the predictions of the model. In general, the total uncertainty predicted by

the model increases when predictions are made outside the bounds of the training data.

Fundamentally, this model can predict Isat with uncertainty at any point in space covered by the

training data. No other model currently exists that can perform this prediction. Traditionally, this

capability would be possible only with a detailed theoretical study.
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5.9.2 Current limitations

This study would be dramatically improved by collecting more, diverse data. Only 44 of the

67 dataruns in this dataset had randomly sampled LAPD machine settings which is very small

compared to the over 60,000 possible combinations. In addition, there are many other settings or

parameters that were not changed in this study, such as gas puff timings, gas puff valve asymmetries,

wall/limiter biasing, cathode heater settings, operation of the north cathode, and so on. The bounds

of the inputs were also conservative; all settings in this study could be pushed higher or lower with a

small amount of risk to LAPD operations. In addition, the placement of the probes could be further

varied and placed outside the mirror cell, which would provide a more complete picture of LAPD

plasmas, particularly axial effects.

Probe calibrations differed between the two training run sets (DR1 and DR2) – and a flag was

introduced to distinguish between them – but despite this deficiency combining the two run sets

was shown to be advantageous for model performance. The condition of the cathode (e.g., electron

emissivity and uniformity) also has a large impact on the measured Isat. The improved model

performance with the flag suggests that inconsistencies between dataruns could be compensated for

using latent variables if a generative modeling approach is to be taken. At the very least, this model

provides a way to benchmark these differences in machine state.

Concerning the model, hyperparameter tuning could be performed. In this study a few extra

percent in MSE performance is not meaningful considering the limited dataset. Instead, we focused

on the trends and insights that can be extracted from this model rather than simple predictive

accuracy. There may also be regimes in hyperparameter space where the uncertainty is better

calibrated (perhaps using early stopping). Uncertainty estimation is important, even if the absolute

uncertainty is not well-calibrated because it can provide a useful relative estimate as shown in this

study.

Trends such as the dependence of axial gradient on the gas puff duration (fig. 5.18) or the effect

discharge voltage on x-z profiles (fig. 5.17), although intuitive, remain unverified. Verification of
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these trends would increase confidence of model predictions when setting LAPD parameters in

future experiments.

5.9.3 Future directions

The neural network architecture used here can readily scale to additional inputs and outputs; in-

cluding time-series signals is the obvious next step. Integration of multiple diagnostics – perhaps

starting with individual models before combining them – could enable inference of plasma param-

eters throughout the device volume. For example, combining triple probe electron temperature

measurements with existing Isat data would allow density predictions anywhere in the plasma. This

capability could enable in-situ diagnostic cross-calibration (e.g., the Thomson scattering density

measurement) and prediction of higher-order distribution moments like particle flux. The model

could be further enhanced by incorporating physics constraints such as boundary conditions (e.g.,

zero Isat at the machine wall) or symmetries.

The problem presented here – learning time-averaged Isat trends – is fairly simple and required

a relatively simple model. As demonstrated in this work, ML provides a way to explore regions

of parameter space quickly and efficiently. Most physics studies on plasma devices (and fusion

devices) are dedicated to a single particular problem, use grid scans, and are not useful to other

experiments or campaigns. This work shows a way of using data and trends uncovered from other

experimental studies. This work also demonstrates that random exploration can be a useful tool:

the increased diversity of the aggregated data will generally benefit an ML model whether the

experimenter discovers something new or not.

5.10 Conclusion

We demonstrate the first randomized experiments in a magnetized plasma experiment to train a

neural network model. This learned model was then used to infer trends when changing field

configuration, discharge voltage, or gas puff duration. This model was also used to optimize axial
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variation of Isat as measured by the standard deviation, which was validated in later experiments

despite poor absolute error.

We strongly advocate that all ML-based analyses in plasma and fusion research should be

validated and used to gain insight by inferring trends, as demonstrated here. This validation step is

crucial for ensuring that ML models capture physically meaningful relationships and the insights

provided may provide direction for future research. We hope this is the first step towards automating

plasma science.

5.11 The open dataset and repository

All the code to perform the ML portion of this study is available at https://doi.org/10.5281/

zenodo.15007853. The training datasets are also available in that repository in the datasets

directory. Additional data are available upon request. The repository also contains additional

training details and the notebooks for generating the plots in this document. The plots used in this

study were made in jupyter notebooks, which are also uploaded. The final training code can be

found in train_dense_beta_NLL.py. Trained models are found in the code/training_runs

directory. The history of many training runs can be found on Weights and Biases: https://wandb.

ai/phil/profile-predict and the accompanying notes on these trained models are found in the

associated pdf on github. The code and dataset are licensed under Creative Commons Attribution

Share Alike 4.0 International License.
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CHAPTER 6

Energy-based models for diagnostic reconstruction and

distribution modeling

Energy-based models (EBMs) provide a powerful and flexible way of learning relationships in

data by constructing an energy surface. We extend EBMs to laboratory plasma physics, a domain

characterized by highly nonlinear phenomena studied using incomplete diagnostic information.

These diagnostics can be unreliable or difficult to analyze. In addition, the possible configuration

space of a plasma device is sufficiently large that it cannot be efficiently searched using conventional

analysis techniques. EBMs provide a way to address these issues. At the Large Plasma Device

(LAPD), a CNN- and attention-based EBM is trained on a set of randomly generated machine

conditions and their corresponding diagnostic time series. We demonstrate diagnostic reconstruction

using this EBM and also show that including additional diagnostics improves reconstruction error

and generation quality. Symmetries in the data can be found by directly evaluating the energy surface,

potentially leading to a new line of inquiry using learned models. In addition, this multimodal

EBM is able to unconditionally reproduce all distributional modes, suggesting future potential in

anomaly detection on the LAPD. Fundamentally, this work demonstrates the flexibility and efficacy

of EBM-based generative modeling of laboratory plasma data, and showcases practical use of EBMs

in the physical sciences.
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6.1 Goals and prior work

6.1.1 Goals

We seek to use machine learning – particularly generative models – to alleviate some of the

challenges facing fusion-related plasma science and to accelerate the advent of fusion power. In

particular, we want to be able to reconstruct missing diagnostic signals from any other set of signals.

In addition, the reconstruction should be a probability distribution, not just a single estimate. This

distribution should also be combinable with other sources of information such as simulations or

constraints placed on it via prior knowledge.

6.1.2 Generative modeling of plasmas

The use of generative models in plasma physics is not without precedent, but remains relatively

uncommon. Variational autoencoders [89] have been used to generate new, realistic output from

stellarator transport simulations for inferring trends and uncovering physics [98] and to discover

relationships between inputs and outputs [160]. These VAEs have also been used in the COMPASS

to identify a rare instability characterized by fluctuations in magnetic probes [169] by pretaining on

unlabeled data and combining the model with a classifier over a smaller, labeled dataset.

On the Joint European Torus experiment, a generative topographic map was used to create a 2d

representation of a 7d input space (information from 1d profiles) [117]. This mapping clearly shows

a disruptive-nondisruptive boundary and the relative stability of locations in this 2d representation

can be evaluated by visualizing cluster distances. Discharge trajectories can be visualized in

this reduced 2d space. Likewise on the HBT-EP tokamak, a VAE was trained on coil currents,

equilibrium properties, and MHD information to learn a 2d latent representation [163]. This model

was run in real time to identify threshold crossing events which then triggered preprogrammed

countermeasures.

Generative-adversarial networks (GANs) [64] have also been used to generate synthetic training
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data (time series of plasma current) for use in training a disruption predictor [31]. GANs have

also been used to generate posterior distributions of surface temperature and emissivity given the

measured radiance for the thermal surface-pointed cameras on the WEST tokamak [83].

Diagnostic reconstruction is useful in the event a diagnostic goes offline, but it can also be used

to supplement existing diagnostics. One such example is the upsampling of the Thomson scattering

signal on DIII-D based on information from other diagnostics using a neural network-based solution

[80]. In addition, Bayesian and ML work in fusion has been recently reviewed[118].

Outside of magnetized plasmas, random experiments were performed in an inductively coupled

plasma (ICP) similar to the process used to collect for this work. These data were used to train a VAE

as a surrogate collisional radiative model [30] to construct an interpolatable latent representation.

Concerning EBMs, they have yet to be applied to plasma physics problems. One notable

application in the physical sciences has been in the high-energy physics community. EBMs were

used for modeling event patterns in the Large Hadron Collider (LHC) for anomaly detection and to

augment a classifier [26] with success.

6.2 Introduction to energy-based models (EBMs)

Energy-based models interpret a probability distribution through the lens of the Boltzmann distribu-

tion [73, 5, 97]. In the EBM formulation, the unnormalized probability density is parameterized by

an energy function, that is p̃(x) = exp(−Eθ (x)), where θ are the parameters of this energy function.

In this work and the works cited, this energy function is parameterized by a neural network. EBMs

have been historically difficult to train, but recent work has demonstrated high-quality sampling

using MCMC techniques in high-dimensional spaces [40, 41, 39, 37, 38, 112, 113, 33, 59]. These

MCMC techniques are fundamentally based in contrastive divergence [69, 135, 150]. The nature of

MCMC-based sampling of EBMs, detailing the convergence of and expansion and contraction of

learned models (a paradigm particularly helpful for training EBMs in this work) has been studied

[112, 113]. Training via contrastive divergence can be improved by implementing a term typically
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left out which approximates the KL-divergence [39].

EBMs can attain GAN-like performance while generating all modes of a distribution [41].

These models have also been used for text generation [33] and model-based planning [40]. In

addition, EBMs can be composed by combining the energy functions in various ways which has

been demonstrated in image generation tasks [37, 38].

Overview of EBMs, how they are trained, and their place among generative models [21].

Another helpful review of generative modeling that helped in the selection by detailing advantages

and disadvantages of various methods [17]. EBMs in particular have some desirable properties. The

implicit generation scheme does not require balancing an explicit generator with a discriminator or

encoder. In addition, the energy-based representation is amenable to modification of an auxiliary

function, allowing the generated samples to be easily steered, enabling the composition of multiple

energy functions. Lastly, EBMs do not easily suffer from mode collapse or otherwise ignore parts

of the distribution. For these reasons, we use EBMs for building a distribution of our LAPD data.

6.3 Data preparation

Around 130 thousand shots were taken on the Large Plasma Device for 67 different dataruns,

varying machine conditions and probe configurations as detailed in chapter 4. The train-test split is

identical to what was performed in earlier chapters. Namely, four dataruns each from DR1 and DR2

were held out as representative configurations. In order to reduce computational requirements, the

time series data was downsampled. The original sampling rates for the machine state information

and auxiliary diagnostics were 25 kHz. The sampling rate for the Isat probe was 6.25 MHz. All

time-series data were downsampled to a common sampling rate of 2.5 kHz. This downsample leads

to the time series having a length of 76 points long, and the MSI were truncated to be identical in

duration and start time to the Isat time series.

The dataset includes nine time series in total: discharge current, discharge voltage, 5 diode

signals (the last of which having a He-II filter), interferometer (line-integrated density), and Isat
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from a Langmuir probe. Additionally, several one-dimensional inputs and flags were included:

probe position (x, y, z), magnetic field (source, mirror, and midplane), gas puff duration and voltage,

total gas pressure, first 4 amu RGA readings, run set flag, and top gas puff flag. In total, the input

length is 699 features when concatenated.

When fed into the model, each input is mean-subtracted and scaled independently by the peak-

to-peak value. Scaling each value was found to work much better than scaling a whole time series

by the same value. Often, the beginning and end of the time series would have very little variance

(such as in discharge current always starting at 1 kA). Learning distributions of very small width

appears to be difficult for EBMs.

6.4 Training the EBM

The following loss function is used to train the EBM:

L = LCD +LKL +αLreg (6.1)

where LCD is the contrastive divergence (CD) loss, LKL is the KL-divergence loss, and Lreg is the

energy regularization loss, listed in order of importance. The contrastive divergence loss is defined

as:

LCD =
1
M ∑

i
Eθ (x̃+i )−Eθ (x̃L

i ) (6.2)

This loss calculates the difference in energies between sample from the energy surface x̃L
i via

Langevin dynamics – the “negative” samples – and the samples from the data distribution x̃+i , i.e.,

the training data. This loss places the energy surface in tension, with the surface being pulled down

by the data and pushed up on the negative samples. Both terms must be included: absence of

negative samples would lead to a vacuous solution such as a flat energy surface. The KL-divergence

loss is:

LKL =
1
M ∑

i
EΩ(θ)(Eθ (x̂K

i )−NN(X , x̂K
i ) (6.3)
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This loss, suggested in [39] includes portions of the CD loss typically left out. Specifically, this

loss minimizes the sampler energy by propagating gradients through the MCMC steps themselves

instead of the final samples. In addition, the nearest-neighbor (NN) samples are used to estimate

the energy of the negative samples so that the entropy of the distribution is maximized. This loss,

though not necessary, significantly improves training stability. The regularization loss

Lreg =
1
M ∑

i
Eθ (x̃+i )

2 +Eθ (x̃L
i )

2 (6.4)

keeps the energy values centered near 0. The absolute value of the energy does not matter – only the

gradients and scale – but this is included to keep the results easily interpretable and to avoid extreme

energy values as to not run into floating-point representation boundaries. In this work, the scale of

this regularization is very small with α = 1×10−6. This loss also functions as a great diagnostic

for when the sampler fails: the regularization loss will reach 1/α . The EBM training process is

presented in algorithm 1.

6.4.1 The sampler

The sampler is fundamental to how the model is trained and how samples are generated; the

configuration of the sampler is one of the most important considerations when building the EBM.

The samples are initialized from random noise between −1 and 1. We use Langevin dynamics

to move the samples as formulated in Nijkamp et al. [112], as seen in algorithm 2. A variety of

step sizes and number of steps were used. The number of sampler steps per batch was critical for

training stability: 30 appears to be close to the minimum number of steps for stable training, similar

to what has been observed in other studies [26].

The step size is typically chosen to match the standard deviation of the smallest feature, but that

was found to be too large for this use case. Given that our data are highly multimodal, some modes

of the input distribution had a deviation of 0 (such as the flags). For this reason, a smaller step size

of ε = 0.01 was used.

The model was trained for 27 hours over 172 epochs. The batch size was 128 and was trained
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Algorithm 1 EBM training algorithm

Require: Training samples x+i , training data distribution pD, energy function Eθ , replay buffer B,

step size ε , MCMC steps L, KL MCMC steps K, energy regularization strength α , stop gradient

operator Ω(·), replay fraction fB, batch size M

B←U (−1,1) ▷ Fill buffer from uniform distribution

while not converged do

x+i ∼ pD

x̃0
i ∼B sample M fB negative examples, U (−1,1) otherwise

X ∼B nearest-neighbor samples such that X ∩ x̃0
i =∅

for sample step ℓ= 1 to L do ▷ Run Langevin dynamics

x̃ℓi ← x̃ℓ−1
i − ε2

2 ∇xEθ (x̃ℓ−1
i )+ εN (0,1)

end for

x̃L
i = Ω(x̃L

i )

x̂0
i = x̃ℓi where ℓ= L−K ▷ Run Langevin dynamics for KL loss

for KL sample step k = 1 to K do

x̂k
i ← x̂k−1

i − ε2

2 ∇xEθ (x̂k−1
i )+ εN (0,1)

end for

LCD = 1
M ∑i Eθ (x̃+i )−Eθ (x̃L

i )

LKL = 1
M ∑i EΩ(θ)(Eθ (x̂K

i )−NN(X , x̂K
i ) ▷ Has gradients through MCMC

Lreg =
1
M ∑i Eθ (x̃+i )

2 +Eθ (x̃L
i )

2

L = LCD +LKL +αLreg

Apply ∇θL to θ via the Adam optimizer

B←B∪U (−1,1) and remove samples to maintain buffer size

end while
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Algorithm 2 EBM sampling
Require: Energy function Eθ , auxiliary energy function F , step size ε , MCMC sampling steps L

x̃0
i ∼U (−1,1) ▷ Initialize on uniform distribution

for sample step ℓ= 1 to L do ▷ Run Langevin dynamics

x̃ℓi ← x̃ℓ−1
i − ε2

2 ∇x

(
Eθ (x̃ℓ−1

i )+F(x̃ℓ−1
i )

)
+ εN (0,1)

end for

Return x̃L
i

with the AdamW optimizer with a learning rate of 10−4, decaying to 10−5 after 20 epochs. Training

using stochastic gradient descent required very large learning rates (10−2) and could not generate

realistic samples even with a learning rate decay schedule. The first 100 epochs were trained in

a single run; the next 72 were resumed from the final checkpoint of the previous run, leading to

reinitialization of the replay buffer. Given the low learning rate, this did not have a significant

impact on model training. This model, taken from the 39th epoch of the second run, was used for

inference; after which, training diverged.

The training curves of loss, relative energy, and energy gradient can be seen in fig. 6.1. The loss

curve is very hard to interpret given all the components of the loss function. Maintaining a relative

energy near 0 between negative and positive samples is crucial for model performance. A value near

0 indicates that the generated samples are close to the data distribution. When the sampler diverges,

samples are no longer accurately representing the data and thus training fails. The energy function

learns the scale of the gradients required to produce good samples. When training is proceeding

normally, the ratio of the gradient step to the noise scale (step size) ε is near 1.

6.4.2 Replay buffer configuration

A replay buffer is used to provide a warm start for the sampler chains. Every batch iteration, 5%

of the samples from the buffer are replaced with random noise (a replay fraction of 0.95). This
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Figure 6.1: Training curves of the model. Top: the total loss, middle: the relative energies of the

negative samples and the training examples (positive samples), bottom: the gradient of the energy

function normalized to the noise scale (step size ε).
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Figure 6.2: Distribution of batches in replay buffer. When training is starting (epoch 0, left), the

number of batches each sample experiences is low and somewhat uniform. After 10 training epochs

(right), the number of batches experienced by a sample converged to an exponential distribution.

replay fraction leads to a mean of 1/0.05=20 batch iterations for each chain, with half the chains

experiencing ln(2)/0.05 ≈ 14 batches. The replay buffer requires 4 to 5 epochs to converge to

an exponential distribution in the number of steps experienced by each chain in the buffer. This

diversity of chain lengths likely encourages quick convergence of the chain but good long-term

samples (on average, each chain experience 600 MCMC updates/steps). The distribution of the

batches among the replay buffer can be seen in fig. 6.2. One downside of this long buffer is that

if a sample ends up in a region far outside the domain (−1 to 1) it can cause exploding gradients;

samples have a ≈ 50% chance of lasting 194 batches if one goes awry. Implementing a reject step

for these prodigal samples may improve training stability.

6.4.3 Sampling behavior

In general, if the model is not learning, increase the number of sample steps, decreasing the step

size, and decreasing the learning rate are beneficial steps to take. A lower learning rate decreases

the change per batch in the energy surface, so stale sample chains from the replay buffer may find

themselves in more familiar territory than if the energy function is rapidly changing. More sample
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steps relaxes the requirement for the samples to rapidly find realistic (lower energy) locations,

perhaps leading to shallower gradients and greater stability. Much work needs to be done to really

understand the dynamics of the sampler in the training process. The samples from the replay buffer

sampling may also benefit from a non-memoryless distribution so that the chains are guaranteed a

certain number of sample steps over their lifetime, with a hard limit so that chains do not persist for

too long.

6.5 Architecture

The model is intrinsically multi-modal: time-series data from diagnostics is mixed in with machine

settings, state, and probe position. In this model we preprocess separately each time series and the

LAPD configuration. Convolutional NNs were used for the time series input, and transformer-like

multi-head attention blocks were used for the settings, state, and probe position. The time series

convolutions were merged in another convolutional pass, and the two branches were combined

using multi-head attention. A visual representation of the architecture can be seen in fig. 6.3, with

the layer blocks defined in fig. 6.4. Convolutions were chosen for the time series input because they

are relatively parameter efficient. The depth of the network guarantees that the receptive field of

the downstream neurons covers the entire input space so the positional dependence of the signal

is maintained. No pooling layers were used. In general, fully-connected networks were found

to be difficult to train (which has been observed in other studies [26]) and are only used when

projecting representations to higher or lower dimensions. The cause of this training difficulty for

dense networks is unknown. In general, including residual connections appeared to help improve

training stability.

During experimentation, it was found that preprocessing the signals before combining into

the energy function worked much better than combining all the signals near the inputs. This may

indicate that feature learning is very important for the EBM to learn a representative energy surface,

at least for this dataset. The energy layers – responsible for combining the learned representations
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Figure 6.3: Architecture for learning the energy function. Two main branches were used: processing

the time series inputs and the machine settings. The layer blocks are defined in fig. 6.4.
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– were not as sensitive to parameter count. Despite this importance of feature learning, attempts

to train the EBM with a pretrained encoder was difficult and could not converge to a good energy

surface.

The EBM struggled to model the positional dependence of the Isat signal, so a branch was added

from the probe positions to add onto the intermediate representation of the Isat signal. This branch

improved performance of the positional mapping, but is not as accurate as the simple feed forward

model from the previous chapter. Performance may be improved by improving model capacity, or

reducing the learning rate in conjunction with the step size.

The architecture developed for this study is not optimal – it is simply one that works and is

mostly stable. The architecture likely has ample room for improvement, particularly regarding the

learning of the probe position. Additional, intermediate connections between the time series and 1d

inputs should be explored. The current architecture can be thought of as a medium-term multimodal

fusion design (early fusion did not work).

6.6 Unconditional sampling

Unconditional samples can tell us how well the network is modeling the data distribution. 5000

samples were generated with the inputs initialized from a uniform distribution between -1 and 1.

These samples ran for 120 steps of Langevin dynamics with the default step size of 0.01. On an

RTX 3090, this process took 64 seconds. The MCMC trajectories of unconditional samples steps

these samples can be seen in fig. 6.5. Notably after a small number of sampling steps – around 30 –

the energy surface gradients appear to flatten out and thus the energies of the samples level off. This

leveling point may be determined by the number of samples steps used while training the model:

each randomly-initialized sample runs for 30 steps before being added to the replay buffer. Despite

converging relatively quickly, long-run MCMC chains look just as realistic as shorter-duration

chains and do not exhibit the burn-in or high-saturation that has been observed in other work [41].

Given that the data distributions are highly multi-modal, it is important that the EBM captures
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Figure 6.5: MCMC energies, gradients, and integrated trajectory length for unconditional samples.

Left: the model converges after approximately 50 sampling steps. Middle: the gradients approach an

asymptote; long-term samples are realistic. Right: integrated trajectory length show that individual

MCMC trajectories vary in total distance traveled along the energy surface.

many, if not all, modes of the distribution. Representative examples of these distributions, namely

of diode 3 at 16 ms (chosen arbitrarily) and the mirror field, can be seen in fig. 6.6. The full

unconditional distribution for each input (or at 16 ms for time-series data) can be seen in fig. 6.7.

Notably, although most – if not all – modes of the distribution are covered, the mass associated with

each mode may not agree. This behavior is evident in the aggregate energy distribution seen in

fig. 6.8. On average, the unconditional samples have higher energy than the data. In terms of the

scaled values of all of the inputs, the model appears to struggle with extreme values. This could hint

towards the need for data augmentation so that chains can properly mix, or a need for a different

random initialization before commencing Langevin dynamics.

6.7 Diagnostic reconstruction via conditional sampling

Conditional sampling of these models is typically performed by initializing a portion of the inputs

on real (or otherwise desired) data and only sampling the other inputs. In practice, this can be

done by freezing the gradients of the inputs to be conditioned on. In this work, we use a different
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Figure 6.6: Unconditional samples of diode 3 at 16 ms and the mirror coil magnetic field inputs,

chosen as representative examples. The EBM learns all modes of the distributions, though the

probability mass is not well-aligned.

approach of instead modifying the energy function based on the data to be conditioned on. Given

the energy model E(x), where x is an input into the model, we add an auxiliary energy function

F(x) that is added to E(x). This creates a new aggregate energy function E(x)+F(x). By definition

of energy pE(x) ∝ exp(−E(x)), this is equivalent to multiplying the two distributions pE(x) · pF(x).

In other words, adding this auxiliary energy function F(x) to E(x) implies we are sampling over the

distribution pF ∩ pF .

The choice of auxiliary energy function F(x) can make a large difference on the conditional

samples. We choose F(x) to be a quadratic energy function centered on the data:

F(x) =
(

x− xfixed

σF

)2

(6.5)

where σF controls the horizontal scale of the quadratic function. Interpreted as a probability

distribution, this is a Gaussian with standard deviation σF . The minimal width for stable sampling

appears to be ≈ (2ε)2. This makes sense from a sampling point of view: if the width of F(x)

approach the step size, a Langevin update step may place the particle at a much higher energy with

much larger gradients. This behavior also ties the conditional sampling directly to the training

process because the conditional samples are naturally limited to the step sized used while training,
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Figure 6.7: Unconditional samples of all inputs, or at 16 ms – chosen arbitrarily – for time series.

The model appears to learn most, if not all, modes of the distributions, but can perform poorly when

modeling the probability mass, such as in the Isat distribution.
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Figure 6.8: Left: all scaled inputs from the training set vs samples inputs. The distributions are

similar, but the EBM does not appear to learn more extreme values. Right: corresponding energy

distribution. The EBM learns all the modes, but the probability mass is not properly distributed.

and thus are also tied to the fidelity of the model. Other distributions were used, such as a Laplace

distribution via F(x) = |x− xfixed|, but the samples produced lacked the diversity seen when using

a quadratic F(x). Note that the normalizing constants of the probability distribution pF(x) do not

matter because they vanish after − log(·) is applied and the energy gradients ∇xF(x) are taken.

6.7.1 Sampling interferometer signals

Using this conditional sampling method, we now reconstruct interferometer signals. We choose to

reconstruct interferometer signals because the results are more easily interpreted physically than

the diodes and the discharge current. Using conditional sampling, we compare the samples when

only the LAPD control inputs are given and compare with sampling when other diagnostics are

given – namely the discharge current, diodes, and Isat. The machine inputs are the discharge voltage,

gas puff duration and voltage, gas pressures, and magnetic field configuration. We also compare

the traditional method of initializing on data and freezing gradients. A summary of the results and

standard deviation of the distributions can be seen in table. 6.1. The full time series of the samples

can be seen in fig. 6.9. Note that the training set RMSE is an order of magnitude better than the test
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Table 6.1: RMSE and 2σ of conditional interferometer samples for test set and DR2_02

Given: LAPD settings only All signals Frozen gradients

RMSE (test set) 4.12×1018 2.91×1018 3.13×1018

RMSE (DR2_02) 3.77×1018 3.54×1018 2.51×1018

2 σ (DR2_02) 6.93×1018 8.37×1018 3.38×1017

Training RMSE 4.40×1017

set, which is in line with expectations given the limited dataset diversity.

For sampling, 90 samples steps were taken with the training step size of ε = 0.01. The auxiliary

energy function used a width of (2ε)2. Interferometer traces from a single shot from each of the

eight test set dataruns were sampled. 128 samples of the interferometer signal were taken from each

datarun, taking approximately 9 seconds on an RTX 3090.

Sampling with only machine inputs given led to a large variety of potential interferometer

signals, seen on the left of fig. 6.9. Comparing to the case where all data is given (middle of the

figure) yields some interesting insights. First , the variety of the sample distribution is dramatically

decreased (seen in the bottom row). The number of modes in the distribution dramatically decreases

markedly from over ten to four. Second, the shapes of the curves when diagnostics are given

matches better. Third, the RMSE improves slightly for this particular case, but reduces significantly

– ≳ 25% – when computed over the entire test set (tab. 6.1). The 2σ range of the samples increases,

however, perhaps indicating increased uncertainty. This uncertainty increase is counterintuitive

given the increased context. The particular Isat time trace did not make much of a difference on

sample quality, indicating that the model was also using information in the discharge current and

diode signals when reconstructing the interferometer signal.

Sampling while freezing gradients (right side of fig. 6.9) can lead to good RMSE values relative

to the other samples, but the actual samples look terrible and are unphysical: negative density is

impossible. Constraining the samples to be greater than 0 using an auxiliary energy function ensures

positive interferometer values, but the sample quality remains very poor and ironically increases the
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RMSE. The distribution of signals is also very narrow, leading to a very overconfident prediction.

Note that there is nothing special about sampling the interferometer in particular. Any diagnostic

or feature of the dataset can be conditionally sampled given other data. In other words, this model

allows you to predict any feature of the data given any other feature, which is incredibly powerful,

and may enable opportunities such as diagnostic calibration after-the-fact.

6.8 Symmetries and trends in the energy function

Structure in the energy function itself can also be examined to extract insights from the data. One

example of this can be seen in scans along the energy function for the x-axis probe position. Since

LAPD plasmas are approximately azimuthally symmetric (because of the cylindrical geometry), we

expect the energy function to exhibit similar behavior. Given a certain Isat time series, we expect the

position of the probe to be equally likely at a constant radius if the azimuthal symmetry is perfect.

Energy scans along the x axis for a given shot (and Isat time series) for a training and a test set

datarun can be seen in fig. 6.10. When a shot near or on the magnetic axis is provided, the energy

function is largely symmetric about that point. When a shot is provided further out, the energy

function takes on a shape with two minima, indicating that two positions of the energy surface are

likely. This behavior is obvious in the test set case of DR2_19 (yellow curve) – either side of the y

axis on the x axis are nearly equally likely. For a shot near the machine wall (red curve), the energy

distribution has two minima, but the minimum on the opposite side is closer than ideal, but the true

symmetrical position is beyond the limits of the training data. Not all shots yield symmetric energy

functions, as seen in the red curve of the training set (left side of fig. 6.10).

This direct analysis of the energy function is uncommon, if not novel, owing to the intrinsic

structure of the data. Analyzing energy functions in this way requires a dataset that has strong

dependence on a low dimensional subset – sufficiently low that a comprehensive grid scan is

tractable. The probe coordinates and machine settings satisfy this condition: changing one of those

values dramatically affects likely values of other inputs. For most datasets, and the time series
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Figure 6.9: Reconstructing the interferometer signal for a test-set datarun, showing only 32 samples

for clarity. Given only the inputs (left), the interferometer signal reconstruction uncertainty is quite

large with many possible modes. When given other diagnostics signals, the RMSE improves by

2×1017 m−2, but the uncertainty increases. If the model is sampled by instead initializing all inputs

on real data and freezing the gradients (right), the model produces unphysical results and is poorly

calibrated. The datarun chosen (DR2_02) is representative of performance across the test set.
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Figure 6.10: Scans along the x-axis input for the energy function of a real shot. When off-axis shots

are provided, the energy function may encode the symmetry about the y axis.

inputs in the dataset used here, changing a single input away from the data value does not yield any

particular insight. For example, changing a single pixel in an image does not significantly change

the image, though changing a group of pixels could. In the case of this dataset, changing the probe

position could change the Isat time series significantly, so scanning along probe positions could

yield insight into the dependence of the Isat time series.

Certainly other symmetries in the data could be uncovered by directly analyzing this energy

function (future work includes the relationship of gas puff duration and voltage to discharge power).

Two- or three-dimensional scans along on particular inputs, such as gas puff or magnetic field

settings, could illuminate regions of LAPD parameter space where expected behavior is identical

Although this positional symmetry presented here is obvious in retrospect, this capability highlights

an important feature of EBMs. This feature is that if the inversion is not well posed, or has many

possible solutions – a multivalued function – the EBM will predict many of them and not just the

mean. In other words, using the energy function, anything can be predicted from anything else

regardless of the invertibility of the problem. This invertibility is very important if multiple machine

configurations lead to similar plasmas. Simply predicting the mean of these possibilities could lead
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to wildly different plasmas.

6.9 Conclusion

In this work, we demonstrate the usefulness of energy-based models (EBMs) for modeling the data

distribution. Using a multi-branch, medium-term fusion architecture, signals from multiple time-

series diagnostics, machine state information, and LAPD inputs are mapped onto an energy surface.

This dataset is highly multimodal in both definitions of the term: the distribution has many modes

and the inputs are different modalities. This energy surface is related to a probability distribution via

p(x) = exp(−E(x)) and can be easily sampled using Langevin dynamics. The distribution captures

all modes of the data, though the represented probability mass has some room for improvement.

Using this learned distribution, it is possible to detect anomalies, reconstruct diagnostic signals given

other data, and uncover trends or symmetries. When reconstructing diagnostics, additional data is

very beneficial, even when the signals are from an uncalibrated diagnostic and are unanalyzed. This

result implies that collecting many different diagnostics signals – even if they are basic – can be

very useful and contain exploitable information. In other words, this model can exploit information

we humans cannot, either because of lack of time, manpower, or the complexity of analysis.

These energy-based distributions are amenable to outside modification, as demonstrated by

the novel conditional sampling technique in this work. This direct access to the distribution

representations enables the scientist to shape the sampling process however desired, so that trends

along any input or combination of inputs can be performed.

6.10 Future work

Given the flexibility of EBMs, there are many potential ways of improving on this work. The

most obvious improvement would be to collect additional data from random LAPD configura-

tions. Expanded probe positions would also be useful. This EBM can be extended to include
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arbitrary amounts of diagnostics, enabling after-the-fact diagnostic calibration or inference of

plasma parameters.

The compositional capabilities of EBMs could enable the model to expand to various machine

states (e.g., cathode condition, heater temperature). An EBM could be trained on a 29-million-shot

dataset which covers various machine states over 3 years. Composing this model with the one

trained in this work could extend its applicability to a broader range of scenarios.

EBMs may also provide a way of joining theory and experiment. One could train an EBM on a

diverse array of simulations with a variety of included physics or strengths of various effects. Jointly

sampling from the sum of the theory and experiment models will effectively select the appropriate

physics model for the desired scenario, enabling better predictive performance of the simulations.

In summary, EBMs provide a powerful new way of representing and analyzing data from a

plasma device, and may become more useful and easier to train as compute becomes cheaper. These

EBMs may enable the future automation of fusion science and device optimization.
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CHAPTER 7

Conclusions

7.1 Mirror turbulence and transport

Several studies were undertaken, exploring (i) turbulence and transport in mirror configurations, (ii)

optimization and trend inference in mirrors using machine learning, and (iii) generative modeling of

machine state and diagnostics using energy-based models.

The primary goal of the study of turbulence and transport was to examine the coupling of the

curvature-induced interchange instability with drift waves (and other modes) in the LAPD. The

interchange instability was not observed: all modes seen were also present in the flat M = 1 case,

ruling out curvature drive. The instability was likely not visible because of the many stabilization

mechanisms present, such as FLR stabilization for azimuthal mode numbers m > 4, line-tying to the

cathode which reduces the growth rate, a stabilization mechanism caused by ionization of neutral

gas, and shear flow which disrupts the mode structure. Although no evidence for interchange mode

was seen, other interesting behavior was present.

Surprisingly, the cross-field transport as measured by the Ẽ×B particle flux decreased as the

mirror ratio was increased from M = 1 to M = 2.68. This decrease in particle flux was largely

caused by a decrease in power of the density fluctuations for mirror ratios up to M = 1.9. The

decrease in particle flux and fluctuation power is, in part, likely caused by the increasing density

gradient scale length Ln when the mirror ratio is increased (the plasma expands radially).

Coincident peaks in density and magnetic fluctuations were observed at 12 kHz and up, with the

frequency increasing with mirror ratio. These fluctuations were identified as drift-Alfvén waves,
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with the frequency set by the maximum Alfvén half-wavelength using the magnetic field averaged

over the length of the plasma. Additional modes were seen at 3 kHz in density and 6 kHz in

magnetics. The origin of these fluctuations could not be determined, but could potentially be a

combination drift waves, a rotational interchange instability, a nonlinear instability, or a conducting

wall mode.

This work indicates that the edge of a mirror fusion reactor may be fairly stable, particularly if it

has larger gradient scale length.

7.2 Machine learning on the LAPD

Two machine learning studies were performed on the LAPD: predicting a time-averaged ion

saturation current (Isat signal) and generative modeling (creating a joint distribution) of time-series

diagnostics and machine state. Both of these studies utilized a diverse dataset collected on the

LAPD. Machine configurations were sampled – using Latin hypercube sampling (LHS) – by varying

gas puff settings, magnetic field configurations, and discharge parameters. This is the first time

on the LAPD – and possibly in magnetized plasmas – that machine settings have been set using a

sampling technique instead of a conventional grid search. This diversity in machine configurations

leads to a large diversity in plasma discharge behavior. Although only 44 machine configurations

were sampled out of 67 dataruns in total, this dataset was sufficient to train models to predict trends

in LAPD behavior.

By training a relatively simple neural network (NN) model, machine settings were mapped to

Isat signals averaged from 10 to 20 ms. This simple model was able to learn trends over the data

despite the limited diversity of the dataset. Trends inferred by varying discharge voltage or magnetic

field configuration agreed with intuition and expectations. When validated on other LAPD data, the

model predictions matched reality fairly well. By performing a comprehensive search over machine

inputs, any function of Isat can be optimized. This model was used to find optima in axial variation

as measured by the standard deviation of Isat signals. The predicted machine configurations for
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minimal, maximal, and intermediate axial variation were applied to the LAPD. The predicted Isat,

although fairly inaccurate on an absolute scale, accurately reflected the trends in axial variation very

well. This model could be used to identify ideal conditions for experimental studies requiring a

particular Isat profile.

This simple model used a β -NLL loss and ensembles to measure uncertainty. The uncertainty

was not calibrated on an absolute scale, but is useful when comparing two different predictions of

the model: greater model uncertainty corresponds to increased error of the prediction. The thorough

uncertainty quantification used in this study, and the distinction between aleatoric and epistemic

uncertainty, is unique among machine learning studies in plasma physics.

An energy-based model (EBM) was also trained on this diverse dataset. EBMs are an uncommon

generative model and this work is the first time EBMs have been applied to plasmas. Instead of

predicting a single average Isat value, additional time-series signals were included. These time-

series signals included discharge current and voltages, five diodes, the interferometer, and Isat.

The EBM learned an energy surface that represented the joint distribution of all these signals

along with machine configuration. This multimodal energy surface was parameterized by a hybrid

fusion architecture, separately learning input representations and combining them later, with some

early crossover for probe positions. This energy surface was sampled using Langevin dynamics.

Generating conditional samples by freezing gradients was demonstrated. A novel method of

conditional sampling via energy surface modification was also demonstrated, leading to higher

quality, physically realistic, samples. Unconditional samples indicated that the EBM learned all

modes of the data distribution, but struggled to learn the mass associated with each mode.

In terms of scope, the flexibility of EBMs makes their analysis comparable to traditional data

analysis. A couple ways of using these EBMs were demonstrated. Interferometer signals were

reconstructed, both with and without additional time-series signals. Including other diagnostics,

such as diodes, increased the accuracy of the predicted time traces. This use of diode signals is

notable because they are uncalibrated and not analyzed, yet the ML model was able to exploit this

information that would otherwise require extensive manual analysis. Given that the EBM learned a
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joint probability distribution, any diagnostic signal can be reconstructed using any combination of

machine settings or other diagnostics signals. This flexibility is unparalleled in machine learning

in plasma physics. In addition to conditional sampling, the energy surface was directly examined.

By scanning the Isat probe x position for a given data point, several dips in the energy surface were

occasionally seen, indicating the x-coordinate symmetry intrinsic in the plasma. The inclusion of

single-dimensional parameters in the joint distribution allows for this novel analysis of the energy

function. Typical EBMs only have one type of input, such as an image, which intrinsically has

a high-dimensional surface. This energy surface scan highlights the ability of the EBM to learn

symmetries and the ability for it to learn multivalued functions.

7.3 Future work

The interchange instability may be visible in the LAPD by increasing the plasma β and magnetic

curvature. Increased β would increase the growth rate and also increase the curvature by opposing

the applied field, and a larger difference in mirror and midplane fields could further encourage

growth of the interchange mode. Once this mode is excited, a study can be performed to analyze

the coupling of interchange to other modes. Achieving a β of 1% – an order of magnitude higher

than present in this study – is possible in the LAPD using the new LaB6 cathode.

Disentangling the different modes present in LAPD mirrors proved to be quite difficult. Further

experiments with additional probes are needed to accurately measure parallel wavelength of different

modes; the work presented here used only two probes which gave an effective average over all

modes present. In particular, differentiating between flute like k∥ = 0 and finite-k modes would

prove beneficial in mode identification. Additional diagnostics and probes outside of the mirror cell

would also be useful in determining if modes exist that are confined to the mirror cell.

Although different length mirrors were briefly examined, the dependence of the modes present

on mirror length could be more thoroughly studied. This length dependence (and thus average field)

could prove beneficial when attempting to differentiate between the instabilities present.
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Additional diagnostics and a diversity of machine conditions are helpful, but simulations would

be the most useful in understanding which modes are possible or present. The computational

approach could range from an eigenvalue solver to gyrokinetics, the latter of which would be

capable of modeling the turbulence present in the device (nearly all fluctuation power was far below

the cyclotron frequencies so the gyrokinetic approach is appropriate). As performed in previous

work [55], a two-fluid edge transport code (BOUT++ [42]) could also be used as an intermediate

approach.

If this mirror turbulence project were to be taken up again on the current LaB6 cathode, machine

learning could have a very prominent role to play in finding the stability boundary. Like the work

done on optimizing Isat profiles, the optimization function could instead be strength of an instability

instead of axial variation. The current dataset collected – although diverse – likely does not contain

sufficient information to find the stability boundary over the multidimensional LAPD actuator or

settings space. More data would need to be taken for this approach to work.

The machine learning work performed here could be substantially improved by collecting a

greater diversity of LAPD configurations. This greater diversity could be enabled by automated

adjustment of LAPD settings (given some safe operating range). Automated setting changes and

randomized probe positions could enable much faster data acquisition and sampling of LAPD

parameter space since grid-based scans are no longer necessary with an ML approach. This

increased diversity would dramatically improve ML model performance. The cathode – and thus

plasma conditions – also change over hours, days, and weeks – inclusion of these effects would

improve the generalizability of learned plasma behavior. A dataset of 29 million discharges spanning

four years has already been collected and may allow categorization and accounting of intrinsic

changes in LAPD plasmas.

Additional diagnostics, such as Langmuir sweeps, triple probes, floating potential, Thomson

scattering, or the diamagnetic loop, could also be included. The inclusion of additional diagnostics

enables diagnostic calibration after data collection. For example, Isat and triple probe Te mea-

surements could be sampled along an interferometer chord to determine the effective area of the
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Langmuir probe, assuming the Langmuir probes are relatively calibrated to each other. Probe Te

measurements could be calibrated by sampling at the Thomson scattering measurement volume.

The flexibility of EBMs allows joint sampling with other distributions. As long as there is some

overlap with experimental data, EBMs trained on simulation data can be jointly sampled to generate

discharges that are both experimentally and theoretically plausible. This joint sampling would

allow interrogation of plasma physics only available to simulations (such as transport coefficients or

the entire multi-species plasma distribution function) but grounded in experimental measurements.

I see this combination as potent and a promising next step for deepening our understanding of

experimental plasmas.

7.4 Accelerating fusion science

The machine learning work in this paper partially addressed the questions laid out in the introduction,

in short: how can we accelerate fusion science? Evidently, an optimization can be performed by

collecting randomized data, to a degree of qualitative success. Despite the poor quantitative

performance, qualitative guidance may be sufficient, as many incremental steps in the correct

direction can achieve a desired outcome. In that way machine learning could help accelerate

progress – I hope this work encourages other plasma and fusion groups to consider exploring

beyond conventional experimental campaigns and increase the diversity of experiments. The ability

to explore and infer trends using ML is also very useful – this trend discovery is often the goal of

many experimental campaigns in fusion and plasma physics.

The energy-based modeling work also indicates another path to accelerating fusion science.

The learned energy function was evidently useful and flexible for reconstructing diagnostics (or

theoretically performing any inverse problem) and extracting insight. This model, as demonstrated

for conditional sampling, can be combined with any other energy-based model. This model

could be trained on another experimental dataset or simulation results, and the joint distribution

sampled from. The performance improvement by including uncalibrated and otherwise unused
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diagnostics while sampling hints that much more information is available to be autonomously

exploited from our devices, even if this information is not directly interpretable. Should an ML-first

approach be adopted to study fusion plasmas, dramatic gains could be achieved in optimization and

understanding.

In conclusion, when done properly, machine learning can be a very useful tool for extracting

insight from data and has the potential to dramatically accelerate fusion science. If fusion science

is accelerated, then our iteration on experiments can likewise be faster; and mirror machines, in

particular, may be the device best suited for this rapid iteration.
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APPENDIX A

0D mirror optimization

This appendix describes a 0d mirror reactor optimization project. The equations and assumptions

used for this optimization are described. This project provided good intuition on the limitations of

simple mirrors. In addition, it gave practical experience using SymPy and Jax. The work has yet to

be extended to tandem mirrors.

This work was built off an Excel spreadsheet created by Cary Forest, with contributions from

Kunal Sanwalka.

A.1 List of assumptions / conditions

There are many issues and assumptions with this analysis (in no particular order):

1. Powers and particles are not strictly balanced in tandem mirrors

2. Thermal barriers are ignored which may be very important for a practical reactor

3. A fudge factor is used for electron temperatures when plug electrons are heating the central

cell

4. Macrostability is not considered

5. Microstability is not considered

6. Plug confinement time is not self-consistent with plug temperatures

7. Effects of field ripple are not calculated
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8. T-T and T-He3 reaction rates are not considered

9. Radial transport is assumed to be only classical

10. Cat-DD assumes instant burnup of products which is unreasonable, particularly at the high

ion energies needed in mirror reactors

11. Impurities are assumed to be zero

12. Heating and magnet costs are not justified

13. All fusion power exits the plasma immediately (charged particles are collected by the direct-

energy converter, neutrons absorbed by the blanket)

14. When using the temperature model from Egedal 2022 [45], we assume that the auxiliary

power is much less than the beam power (Paux/PNBI≪ 1) or else the model may be inaccurate.

Auxilary power (say, to compensate for classical diffusion losses or additional ECH) can be

included in this model but it would require interative solving.

15. Burnup fraction is sufficiently small that fusion reactions are not a significant loss of fuel

(ironically).

16. The DECs collect all ion losses at a fixed efficiency

A.2 User specified parameters

A.2.1 Simple mirror endplug

1. Mirror field, plug (T): Bp,m

2. Plug (i.e., midplane) cell field (T): Bp

3. Magnet bore/throat radius (m): rb
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4. Plug length (m): Lp

5. Neutral beam energy (keV): Einj or Eb

6. Beta limit (critical stability): βlimit (set to 0.8 [91])

7. Effective species mass (amu): µ

8. Effective atomic number (account for He and other impurities): Zeff

The βlimit (discussed in Kotelnikov 2021 [91]) assumes a stationary plasma (no rotation, no flow

out the ends), ignores finite-Larmor-radius (FLR) effects (which stabilize m > a2/Lρi modes), and

uses the paraxial approximation (Lm≫ a). It also assumes β ≪ 1 but this paper shows that these

results match up with GDT experiments. The βlimit depends on the radial pressure profile falloff;

the faster the falloff, the lower the βlimit . L is the length from midplane to throat, and Lm is the

length of the mirror (highest field to lowest, I think). Profile calculations will not be included in a

0D optimization. The relevant assumptions for FLR effects and the paraxial approximation should

be calculated and shown in the output to make sure they are not dramatically violated.

A.2.2 Tandem mirror

Central cell parameters defined below. Simple mirror endplugs are used on either end.

1. Central cell field (T): Bcc

2. Central cell to plug density ratio: ncc/np

3. Central cell ion to plug electron temperature ratio: Tcc,i/Tp,e (assumes Maxwellian)

4. Central cell to plug electron temperature ratio: Tcc,e/Tp,e

5. Central cell length (m): Lcc

6. Electron temperature fudge factor: Tep, fudge if electron are heating the central cell. Default

value is 0.5
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A.2.3 Engineering parameters

1. Vessel wall radius (with respect to plasma radius): awall = awall, ratio ·aplasma

2. Blanket thickness: dblanket

3. Vacuum vessel thickness: dvv

4. Direct Converter Efficiency (used in the mirror exhaust): ηDEC

5. Thermal to electric conversion efficiency: ηT E

6. ECH heating efficiency: ηECH

7. NBI heating efficiency: ηNBI

8. RF heating efficiency: ηRF

Optimizing the blanket and vacuum vessel thickness would probably require some neutronics

calculations which would probably depend on the fuel mix, so we’re just going to leave those

constant in our optimization.

A.3 Fusion

DT fusion helium energy (keV): Eα = 3500

A.3.1 Reactivity

DD and DT fusion cross-section parameterizations can be found in Bosch 1992. [19]. What we

care most about is the fusion reaction rate per unit volume (eq. 10 in the paper):

dR
dV

=
nin j

1+δi j
⟨σv⟩ (A.1)
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Figure A.1: DT reactivities

This parameterization accepts ion temperature in keV and gives reactivity in cm3/s:

⟨σv⟩=C1 ·θ
√

ξ/(mrc2T 3)e−3ξ (A.2)

θ = T /

[
1− T (C2+T (C4+TC6))

1+T (C3+T (C5+TC7))

]
(A.3)

ξ =
(
B2

G/4θ
)1/3

(A.4)

BG = παZ1Z2

√
2mrc2 (A.5)

where mr is the reduced mass and α is the fine structure constant. The coefficients (C1, C2, and so

on) are in the paper cited above. This parameterization is valid for Ti between 0.2 to 100 keV. Max

error is 0.25% for DT and 0.35% and 0.3% for DD⇒ p T and DD⇒ n He3, respectively.

A.3.2 Fusion power

DT fusion reaction rate (#/s):

Rx,DT =V nDnT⟨σv⟩DT (A.6)
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Figure A.2: DD reactivities
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Figure A.3: DT, DD, and D-He3 reactivity comparison
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If nD = nT = n/2, then this becomes V n2

4 ⟨σv⟩DT

DD fusion reaction rate (#/s):

Rx,DD =V
n2

plug, D

2
⟨σv⟩DD (A.7)

The 1
2 factor is to avoid double counting DD reactions.

Fusion power (MW):

PDT,n = 14.1|e|Rx,DT (A.8)

PDT,+ = 3.5|e|Rx,DT (A.9)

PDD,n = 2.45|e|Rx,DD ·
1
2

(A.10)

PDD,+ = (4.02+0.82) |e|Rx,DD ·
1
2

(A.11)

(A.12)

It’s useful to split the power into charged and neutrons because energy is extract from them in

different ways. Neutrons provide thermal power, charged particles heat the plasma and/or are

directly captured by the DECs. The 1
2 coefficient on the DD reactions assumes a 50-50 split on the

DD branching ratio which actually varies with energy and may be significant above around 100 keV.

If we assume the tritium produced from a DD reaction is burned instantly, then the additional power

produced ("catalyed DD") is:

Pcat DD,n = 14.1|e|Rx,DD ·
1
2

(A.13)

Pcat DD,+ = (3.5+18.3) |e|Rx,DD ·
1
2

(A.14)

(A.15)

We assume the tritium is burned instantly because the DT reaction rate is much higher than DD and

D-He3 fusion up to around 200 keV, after which it’s only slightly higher up to around 1 MeV. A

more accurate estimate of fusion power would require estimates of D-He3, TT, and T-He reaction

rates and density evolution of each species. A plot of reactivities can be found in Fig. A.3.
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A.4 General formulae

Electron cyclotron frequency (GHz):

fECH =
eB

2πmec
= 28B (A.16)

Ion cyclotron frequency (MHz):

fci =
ZeB

2πmic
(A.17)

fci,D = 7.63B (A.18)

fci,T = 5.09B (A.19)

Here, Z is the charge state of the ion.

Electron plasma frequency (Hz):

fpe =
1

2π

√
4πnee2

me
= 8.98 ·103√nplug (A.20)

Ion plasma frequency (Hz):

fpi =
1

2π

√
4πniZ2e2

µmp
(A.21)

fpi,D = 2100
√

nplug

2
(A.22)

fpi,T = 2100
√

nplug

3
(A.23)

Here, µ is the mass of the ion in proton mass units (e.g. µDeuterium = 2 and µTritium = 3).

Lorentz factor (γ):

γ =

√
1+

Te

mec2 =

√
1+

Te

511keV
(A.24)

Ion thermal velocity:

vTi = 97900

√
103Eion

µ
(A.25)

178



Ion gyroradius:

ρi =
mv⊥
qB

= 3.22 ·10−3
√

µEion

Bp
(A.26)

Whistler wavelength:

λwhistler =

√
2πΩec2

Π2
e f

(A.27)

λwhistler =

√
90 fECH

f 2
pe fD,2nd Harmonic

(A.28)

The 2nd formula is what appears on the spreadsheet and is used to estimate the size of the RF wave

used for HHFW as compared to the size of the plasma. It takes into account the various constants

and units used in the spreadsheet.

Collision rates (from NRL):

νe = 2.91 ·10−6 ne lnΛ

T 3/2
e

(A.29)

νi = 4.80 ·10−8 Z4
effni lnΛ

µ1/2T 3/2
i

(A.30)

These can be rearranged to give the following collision times (s):

τee = 10−4 T 3/2
e

n20λee
(A.31)

τii = 1.25 ·10−4 µ1/2E3/2
ion

n20Z4
eff

(A.32)

Slowing down times [34]

τi,slow = 0.1
µT 3/2

e

n20Z2λei
(A.33)

τi,fast =

(τii0.4log
Rm√
1−β

)−1

+
1

τslow

−1

(A.34)

Here, we can write Z = 2 for alpha particles. The 2nd equation comes from substituting the

expression for Te in a purely NBI heated case seen above.
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Coulomb logarithms:

λee = 23.5−0.5lnne +1.25lnTe−

(
10−5 +

(lnTe−2)2

16

)1/2

(A.35)

λei = 24−0.5lnne + lnTe (A.36)

λii,Cary = 31−0.5lnne + lnTe (A.37)

λii,NRL = 23−0.5lnne +1.5lnTi (A.38)

The formula for λee is from NRL. The formula for λei is from NRL. However, the plasma does not

fit into any of the 3 limiting cases described in the formulary. We have picked the formula based on

the condition that is violated the least severely. There are 2 formulas for λii. They do not have a

large disagreement in the ranges of Te and Ti of interest.

A.5 Radial particle transport

As of the time of writing, diffusive radial transport in mirror reactors appears to be an open question.

The goal here is to provide reasonable estimates of radial particle loss and how each scale, not

necessarily going for high-accuracy predictions (though being close would be nice!)

A.5.1 Classical diffusion

Assuming Fick’s law and a linear density gradient from 3n to 0 (from Chen 5.8):

τclassical =
nV

A ·Γ
=

na
−2D⊥∇n

(A.39)

where D⊥ is defined as

D⊥ = η⊥n∑T/B2 (A.40)

and the parallel and perpendicular conductivites are

η|| = 5.2 ·10−5 ZlnΛ

T 3/2 (A.41)

η⊥ = 2 ·η|| (A.42)
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Combining all of this together gives

τclassical =
a2B2T

3
2

e

3.12 ·10−4 ·nZ
√

µ lnΛ∑T
(A.43)

A.5.2 Bohm diffusion

Bohm diffusivity:

DBohm =
1

16
·

Ti,cc ·103

Bcc
(A.44)

Normalized gyroradius (assuming deuterium):

rLarmor =

√
2mE⊥

2eBcc
=

0.00791
√

Ti,cc

Bcc
cm (A.45)

ρ
∗ =

rLarmor

acc
(A.46)

Again, using Fick’s law and assuming a linear density gradient from 3n to 0 (so that total particle

number remains n ·V ), cross-field particle flux is:

Γ =−DBohm ·∇ne (A.47)

=
1
16
·

Ti,cc ·103

Bcc
·3ni (A.48)

which implies a characteristic confinement time of

τBohm = Ntot

/
dN
dt

= ni ·V/(Γ∗A) (A.49)

= ni ·πa2L
/(

1
16
·

Ti,cc ·103

Bcc
·3ni ·2πaccL

)
(A.50)

=
8aBcc

3Ti,cc103 (A.51)

A.5.3 Gyro-Bohm diffusion

The gyro-Bohm scaling assumes cross-field transport is dominated by small ion-gyroscale turbulence.

Though commonly used for tokamak scaling laws, we should be able to get some rough estimates for
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mirrors. Right now it can be estimated by just diving the Bohm confinement time by the normalized

gyroradius ρ∗. The gyro-Bohm estimate is then:

τgyro-Bohm =
8aBcc

3Ti,cc103 ·
1

ρ∗
(A.52)

The 1
ρ∗ factor can boost the confinement time estimate by a factor of 50-100.

A.5.4 ETG-driven transport

χETG = 0.1
T 3/2

e,cc

Bcc
(A.53)

τETG =
a2

cc
χETG

(A.54)

A.6 Mirror-specific derived quantities

A.6.1 Temperatures and confinement time in a beam-heated mirror from Egedal et al 2022

[45]

Electron and ion temperature (keV) via pure beam heating [45]: we must solve a system of equations

which considers the power balance of the machine. The ion temperature, given by eq. 22 in [45] is:

3
2

Ti

Ebeam
=

exp(−α)−αΓ(0,α)

Γ(0,α)
(A.55)

Note that eq. 22 in [45] is missing a factor of α in the numerator in front of the Γ function. The

electron temperature can be found in terms of Ti and α by rearranging the definition of α (eq 21):

Te

Ebeam
=

(
Ti

Ebeam

2
3

α2 lnRm
2

(22.4)2

)1/3

(A.56)

These can be solved for with the help of a power (really energy-per-particle) balance equation (eq.

24 in [45]):

Ebeam + paux = Ti +6Te (A.57)
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where paux is the combined sources and losses, such as alpha-particle heating, plasma heat losses,

RF heating, radial transport, and so on. By balancing the power lost with auxiliary heating power

we can keep paux = 0 to avoid iteratively solving this equation. Each ion loses Ti + eΦ≈ Ti +5Te

units of energy and each electron loses ≈ Te units because only hotter electrons can surmount the

ambipolar potential. paux isn’t so much a power as it is the energy gained/lost per particle – an

actual power would require evaluation of the confinement time (eq 29 in [45]):

τp = τ
90
Ti

1
α1λ1

H

Ti/Ebeam

∫ 1

0
M1(ξ )dξ (A.58)

where τ90
Ti is the "scattering reactivity", α1, λ1, and M1 are the normalization value, eigenvalue, and

eigenfunction of the Lorentz scattering operator (eq 4 in [45]). By particle conservation and because

NBI will be the dominant fueling mechanism, confinement time relates to density and beam current

by:

τp = eV nb/INBI (A.59)

For ion temperature,

Ti =
2
3

Ein j (A.60)

This emerges from the relation that E = 1
2kBT for every degree of freedom. For single particles, we

assume 3 degrees of freedom to get E = 3
2T where T is expressed in eV.

For electron temperature,

Te = 0.089Eb log10 (Rp)
0.4 (A.61)

= 0.089Eb log10

(
Rp

1−β

)0.4

(A.62)

which seems to give a roughly 2x higher electron temperature than the reduced model in Egedal

2022 [45], which means that our estimate will be more optimistic.

Particle confinement time (Convention: Rp = Rm) found in Baldwin’s end-loss paper [11]

equations 4.14 and 4.13. The same equation can be applied to tandem mirrors with thermal barriers
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and plug cells [12]. This may be pessimistic. Equation 4.14 [11] states:

nτFowler/Baldwin = κ×1010E3/2
b logReff/ log10 (A.63)

where [n] is cm−3 and [Eb] is keV, and

Reff = Rm/(1+(qφ/mEi)) (A.64)

For 90º NBI, κ falls between 2.4 and 2.8 according to Fokker-Planck calculations [11]; it would

be ∼1.7 if the ion distribution did not have a loss-cone hole because the average energy is higher.

Converting to [n] in m−3:

τFowler/Baldwin = 2.8 ·1016 E3/2
b
ne

logRm/ log10 (A.65)

We may also need finite-β corrections to the mirror ratio.

A.6.2 Confinement time given by classical transport

Classical confinement time estimates assumes that transport is dominated by diffusion of gyrocenters

via Coulomb collisions (from Chen section 5.8[25]). The diffusivity is:

Dclassical = η⊥n∑T/B2 (A.66)

where the perpindicular conductivity (for hydrogen) η⊥ is (temperatures in eV):

η⊥ = 2 ·η||, (A.67)

η|| = 5.2 ·10−5 ZlnΛei

T 3/2
e

√
µ (A.68)

The confinement time is then (summing over species):

τclassical =
nV

A ·Γ
(A.69)

=
na

−2Dperp∇n
(A.70)

τclassical =
aB2

−2η⊥∇n∑T
(A.71)

184



Again assuming a linear radial density profile with a peak of 3ni to keep the total particle number

ni ·V :

τclassical =
a2B2T

3
2

e

3.12 ·10−4 ·nZ
√

µ lnΛ∑T
(A.72)

The aggregate confinement time is then:

τtot =
1

1
τclassical

+ 1
τFowler/Bladwin

(A.73)

A.6.3 End Cells/Plugs

Mirror ratio:

Rplug =
Bp,m

Bp
(A.74)

Radius at the midplane (mapped from bore radius):

aplug = rb

√
Bp,m

Bp
(A.75)

Volume:

Vp = Lpπa2
p (A.76)

Total particle number:

Ntot =Vpnplug (A.77)

Particles lost per second:

dN
dt

=
Ntot

τFowler/Baldwin
(A.78)

Number of gryoradii in the plasma radius:

Ngyro =
ap

ρi
(A.79)

Density (m−3) at the β limit:

nplug = B2
p

βlimit

2µ0|e|(Tion +Te)
(A.80)
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Here, Tion and Te are expressed in eV. This can be found in Wesson page 115. Rolling all the

constants together and with Ti and Te in keV:

n20 = nplug/1020 = B2
p

βlimit

0.04(Tion +Te)
(A.81)

NBI Current (A):

INBI = |e|
dN
dt

(A.82)

The neutral beam current is enough to replace the particles lost by the end plugs. In reality, this

number will be larger since the beam neutrals are ionized via charge exchange as well as ion/electron

impact.

Electron heating by fast ions (MW):

Pe heating by fast ions = 10−3 INBIEb

τslow
(A.83)

Synchrotron radiation power loss (MW) [164]:

Psynch = 6 ·10−3Vpn20Teγ
2B2

p (A.84)

Bremsstrahlung radiation power loss (MW) [164]:

Pbrem = 5.35 ·10−3n2
20Zeff

√
TeVp (A.85)

Power loss from escaping electrons (MW):

Pe,endloss = 10−3(INBI + Icooling) ·7Te (A.86)

Icooling is non-zero when there is current in the expander/divertor. The 7Te is because only electrons

with an energy greater than the ambipolar potential can escape.

Power loss from escaping fast ions (MW):

Pi,endloss = 10−3INBI (Eb−Te) (A.87)
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Injected NBI Power (MW):

PNBI = 10−3INBIEb (A.88)

Injected ECH Power (MW):

PECH =
Psynch

20
+Pe,endloss− (Electron heating from fast ions) (A.89)

Divide by 20 since the plasma recaptures most of the synchrotron losses are reabsorbed.

Lawson Triple Product (1020keV·s/m3):

τFowler/Baldwinn20Ti (A.90)

Neutron Flux (MW/m2):
14

17.6
Pplug

4πa2
wall

(A.91)

Burnup fraction:
Rx,plug,DT

dN/dt
(A.92)

α particle density (1020m−3):

nα =
INBIQplugταEb

16VpEα

(A.93)

but a more intuitive way of putting it may be

nα =
τα

(
Rx, DT +

1
2Rx, DD

)
V

(A.94)

Zeff: (from Wesson section 2.16 [164]) assuming no impurities!:

Zeff =
∑ j n jZ2

j

∑ j n jZ j
=

n+4nα

n+2nα

(A.95)

Qplug:

Qplug =
Pplug

Pinjected
(A.96)

Pelectric,in:

Pelectric,in = Ptotal

(
1

ηHS
−ηDC

(
1− Te

Eb

))
(A.97)
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Pelectric,out:

Pelectric,out = 0.8ηHSPplug (A.98)

Q∗:

Q∗ =
Qplug

1
ηHS
−ηDC

(
1− Te

Eb
+0.2Qplug

) (A.99)

Qelectric:

Qelectric = Q∗ ·0.8 ·ηHS (A.100)

A.6.4 Tandem mirror — central cell

Radius at the midplane:

acc = rb

√
Bp,m

Bcc
(A.101)

Central cell mirror ratio:

Rcc =
Bp,m

Bcc
(A.102)

Central cell beta:

βcc =
2µ0|e|ncc (Tcc,i +Tcc,e)

B2
cc

(A.103)

βcc≥ 1 will lead to an infinite Pastukhov factor, so the β -enhanced mirror ratio Rcc,eff =Rcc

(√
1−βcc

)− 1
2

will be limited by keeping βcc ≤ 0.9.

In a tandem mirror (without a thermal barrier), we assume that the central cell electrons and

plug cell electrons are Maxwellian and in thermal equilibrium, and that the central cell ions are also

at the same temperature (Introduction to Tandem Mirror Physics, eq 1-3 (pg 78)):

Tcc,i = Tcc,e = Tplug,e ·Tfudge factor (A.104)

The plug cell electron temperature is reduced by some fudge factor because they are heating the

central cell plasma. Since the electrons follow a Maxwellian distribution along field lines, they
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follow the Maxwell-Boltzman relationship, where the potential difference between the plug and

central cells are given by:

Φi = Φp−Φc = Tep ln
(

np

nc

)
(A.105)

The enhancement in ion confinement time in the central cell is then given by the Pastukhov factor

(Pastukhov 1974, eq. 21 [116], Kesner et al. eqs. 1-3 [87]):

ncτi = ncτiig(R)
Φi

Tic
exp
(

Φi

Tic

)
(A.106)

where g(R) is a weak function of the mirror ratio. We assume the g(R) is:

g(R) = log

(
2Rcc

1√
1−βcc

+1

)
(A.107)

The ion confinement time is then:

τE = Pastukhov · τcc,ii (A.108)

= log

(
2Rcc

1√
1−βcc

+1

)
Tep

Tic
ln
(

np

ncc

)(
np

ncc

)Tp,e/Tc,i

· τcc,ii (A.109)

Since Tp,e = Tc,i, this reduces to

τE = log

(
2Rcc

1√
1−βcc

+1

)
ln
(

np

ncc

)(
np

ncc

)
· τcc,ii (A.110)

Thermal barriers are not considered in this analysis, which enhance the central cell confinement

by elevating plug electron temperatures instead of only modifying the plug-central cell density ratio

(see Post 1987 eq. 10-110[124]). Thermal barriers require additional heating and ion pumpout

methods. If estimates of the power requirements of thermal barriers are available, they can be easily

included in this analysis and optimization process.

Power lost from the reactor by central cell particles, per meter (MW, T in keV):

Pcc,loss = 10−3
π ·a2

ccncc · e
3
2
(Tcc,i +Tcc,e)/τE (A.111)

Since this is axial power lost, it’s assumed that this power (at least the ion contribution) is recovered

by the DECs.
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The power lost can be account for by lowering Te by some fudge factor, or re-heating the

electrons back up to the self-consistent temperature by injecting ECH:

Paux,ECH = Pcc,loss (A.112)

The central cell will be fueld using cold gas puffing and is ionized and heated by electrons from

the plugs. The fueling current is then:

Icc,fuel =
dNcc

dt
= πa2

ccLccncc/τE (A.113)

Fusion Power per meter (MW/m):

Pfusion = 17.6|e|Rx (A.114)

Breakeven length:

Lbreakeven =
2Pplug,injected

Pfusion per m
(A.115)

Central cell length:

Lcc = Q ·Lbreakeven (A.116)

Total fusion power (MW):

Ptotal = 2Pplug +LccPfusion (A.117)

A.6.5 Overall power balance and plant power estimates

Total electric power in:

Pelectric,in = ηECHPECH +ηNBIPNBI +ηRFPRF (A.118)

Recirculating power:

Precirculating = ηDEC
(
Pfusion,charged +Pcc,i,endloss +Pplug,i,endloss

)
(A.119)
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Thermal power, ignoring power generated by the blanket (the last term is thermal losses caused

by DEC inefficiencies):

Pthermal = Pfusion,neutrons +(1−ηDEC)

(
Precirculating

ηDEC

)
(A.120)

Net electric power:

Pelectric,net =−Pelectric,in +Precirculating +ηthermalPthermal (A.121)

Q electric:

Qelectric =
Precirculating +ηthermalPthermal

Pelectric,in
(A.122)

A.6.6 Instabilities

DCLC ratio (need to keep ∼1,000) [93, 123]:

DCLC ratio =

(
fpi

fci,D

)2

(A.123)

The DCLC ratio must be kept ∼1,000 as the radial density gradient needed to trigger the DCLC

instability is very small (Igradient < 0.01ρg,i for stability). The above condition keeps the plasma

radius large enough to prevent radial gradients that are sharper than those needed to trigger the

DCLC instability from forming.

Interchange growth rate (s−1):

γinterchange =
vTi

Lp
(A.124)

Electron temperature gradient

χETG = 0.1
T 3/2

cc,e

Bcc
(A.125)

τETG =
a2

cc
χETG

(A.126)
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A.7 Costs and economics

A.7.1 Heating

ECH: $10/W

RF: $1/W

NBI: $5/W

A.7.2 Magnets

kA-turns of coil needed for a given field and radius:

IkA-turns =
2 ·B ·a

1000 ·µ0
(A.127)

kA-m of superconductor needed:

S = 2πR · IkA-turns (A.128)

Cost per kA·m = 10−4 M$ / kA·m

Cost of magnet = S·(cost per kA·m)

Radii of magnet coils needed:

1. Mirror: rbore +dvv (0.1m) +dblanket (0.6m)

2. Plug midplane: (awall, ratio ·aplasma)+dblanket +dvv(0.2m)

3. Plug divertor: beta limit + 0.2

4. Central cell: (awall, ratio ·aplasma)+dblanket

For the central cell solenoid we are assuming a spacing of one coil per meter for diagnostic

access. This is an adjustable parameter but will not be optimized because that would require
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energetic particle confinement estimates for coil ripple. For reference, the MARS study [101] had

42 central cell magnets spaced 3.16m apart with an inner radius of roughly 2m which led to 6%

field ripple, which I assume is tolerable.

1. Solenoid field: B = µ0 ·ncc,turns · I, where ncc,turns is number of turns per coil. This becomes

B = µ0 · IkA-turns

2. kA-m per meter length (or per coil): Scc = 2πacc · B
µ0
· (1/coil spacing)

A.8 Optimization constraints

A.8.1 Midplane fields regularization via alpha particle confinement penalties

If we do not regularize field strengths, then the optimizer will bring the central cell (or plug)

magnetic fields to 0 or negative. Only the midplane fields of the central cell and plugs will be

regularized because the cost functions of interest tend towards higher reactor performance (and/or

lower cost), and thus higher mirror ratios (and less HTS tape). The vacuum vessel should be, at

minimum, four alpha gyroradii across. If an alpha is produced in the core, it will reach a distance

of two gyroradii if all the energy is perpendicular to the field (aside: this is more likely with

spin-polarized fuels). Doubling the vacuum vessel radius to four alpha gyroradii is the safer bet.

The 3.5 MeV alpha gyroradius is:

rLarmor =

√
2mE⊥
2eB

=
0.2694cm

B
(A.129)

This regularization is enforced as a penalty coefficient on charged particle fusion power as an

exponential function of the vessel wall:

Cpower penalty =


eadiff/rLarmor if adiff > 0

1.0 otherwise
(A.130)

where adiff is the difference between the vessel wall and 4 alpha gyroradii: adiff = 4rLarmor, 3.5 MeV alphas−

avv. These particle losses depend on the radial plasma profile and should be simulated and implic-
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itly affect the optimization instead of the explicit penalty as done here. Only the 3.5 MeV alpha

gyroradius is considered because it’s the largest of all the usual fusion products but we apply the

penalty to all fusion products. This penalty aims to be a conservative estimate.

A.9 Optimizing mirror configurations

A.9.1 Gradient descent using SymPy and JAX

Optimization is performed via gradient descent, that is, taking the gradient of some cost function C

with respect to some input parameter vector x⃗:

x⃗ := x⃗−∇x⃗C ·λ (A.131)

where λ is the step size. Specific input values can be frozen by multiplying the gradient by a mask.

Equations are defined in SymPy, which are then lambdified to JAX expressions and then

compiled by JAX’s just-in-time (JIT) compiler on first run, or when jax.jit is called. JAX [1]

calculates the gradients of C with respect to x⃗ automatically. The step size λ may be tuned; larger

step sizes may not be able to be used because propagating gradients through exponential functions

in the temperature calculations can be unstable. We also use 64-bit floats so that large values of α

(in the reduced temperature model from Egedal 2022 [45]) remain calculable.

A.9.2 Example: optimizing Q in a simple mirror

As an example of a simple optimization task, we optimize to increase the Q of a simple mirror with

classical radial transport. In this case, Q is just fusion power over NBI and ECH power. ECH power

is only used to replace Bremsstrahlung and electron cyclotron losses to maintain self-consistent

temperatures without requiring iterative solving. D-D fusion products are assumed to be burned

instantly, though this only increases fusion power by roughly 7%.

Because the optimal solution is to decrease Bp until the mirror ratio explodes, we will add a
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1/Bp penalty term to keep values reasonable. The cost function is then:

C =−Q+1/Bp (A.132)

This cost function has no meaningful physical interpretation.

For this optimization case, we hold constant auxiliary heating power (paux = 0 MW), plasma

beta (β = 0.8), mirror bore radius (rb = 0.25 m), length (Lp = 20 m), tritium fraction (Tfrac = 0.5),

and beam energy (Eb = 1000 keV) and optimize only the mirror field (Bpm, T) and central (midplane)

field (Bp, T), Zeff is assumed to be 1. Bp is initialized to 6 T, and eight different values of Bpm are

initialized between 7 and 20 T.

In this optimization, the step size λ is set to 1. The optimization was run for 1000 steps which

was chosen arbitrarily—it doesn’t converge in that step range (and we don’t expect it to in this case).

Plots of the cost function C and the gradient L2 norm for each different configuration can be

seen in fig. A.4. The effects of the optimization on the fields Bpm and Bp can be seen in fig. A.5.

The optimization favors lowering Bp until the regularization cost becomes significant at around step

60. The dramatic increase in mirror ratio leads to greater axial confinement, which decreases NBI

current and power, leading to increased Q and decreased fusion power. Plots of Q and fusion power

can be seen in fig. A.6. The effects of this optimization on the temperatures (or average energy

in the ion case) can be seen in in fig. A.7. The increased confinement time allows the beam ions

more time to slow on the background electrons, decreasing Ti and increase Te. The decreased Ti

decreases D-D reactivity but increases D-T reactivity at a faster rate, leading to higher fusion power.

However, the lower density caused by the lower midplane field (as mandated by the β limit) causes

a net decrease in fusion power.

A.10 Conclusions

Two insights can be gleaned from this simplified optimization task. Firstly, given optimistic physics,

excessively high beam energies, incredibly high field strengths, and ignored impurity and ash
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Figure A.4: The cost function and gradient magnitude for each optimization step.

accumulation, the reactor still only tops out at Q of around 2.3. This low Q implies that simple

mirrors will never be a viable source of electricity. Secondly, Q is a shockingly bad optimization

target because it maximizes fusion power and minimizes heating power simultaneously, thus high

Q’s can be obtained at low fusion power as demonstrated here. An expensive, low-power reactor is

not useful for power production.
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APPENDIX B

Wisdom acquired

1. Simple stuff goes a long way. Try it first

2. Structure your projects so progress is linear with effort

3. Listen to your advisor

4. Write up as you go along. It helps with the thinking too

5. Wrap up projects (or at least get them to a terminal state) as soon as possible

6. Get a dog

7. Nothing really matters

8. Have two simultaneous projects ongoing

9. Good feedback is hard to find. Seek it out

10. Take risks (see item 7)

11. Don’t do solo projects

12. Make lots of friends

13. When life gives you lemons, give them to Mel to make lemon bars
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