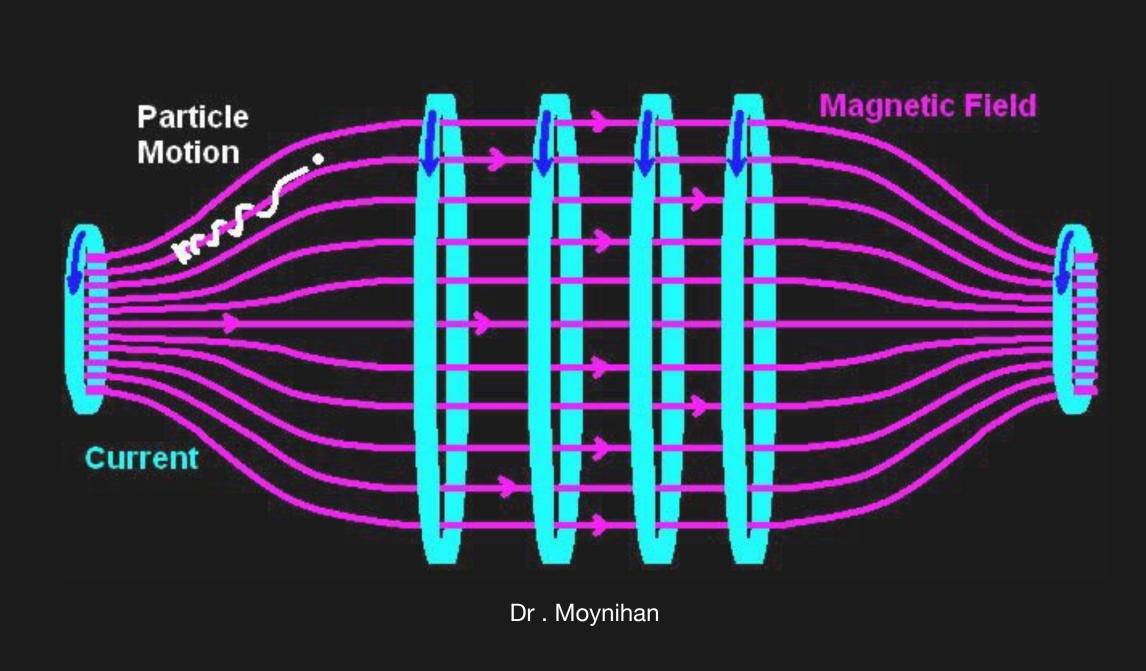


## My goal: get fusion faster with mirrors machines and machine learning (ML)

- Interested in mirrors because of their mechanical simplicity (some downsides)
- Study turbulence and transport important for all fusion devices
- Work towards automating fusion science; we can use ML to:
  - Optimize plasmas
  - Infer trends
  - Extract insight (by interrogating models)



#### Mirror machines operate via conservation of magnetic moment and are intrinsically unstable



**Trapped Escaping Trapped** 

Conservation of magnetic moment:

$$\mu = \frac{W_{\perp}}{B}$$

$$W_{||}$$

$$\text{particle reflected}$$

$$\text{conservation of}$$



energy

#### Mirrors suffer from the interchange instability

- Interchange instability: pressure gradient in same direction as the curvature vector
  - Historical focus of research: stabilize interchange and losscone instabilities
- Other instabilities are present regardless

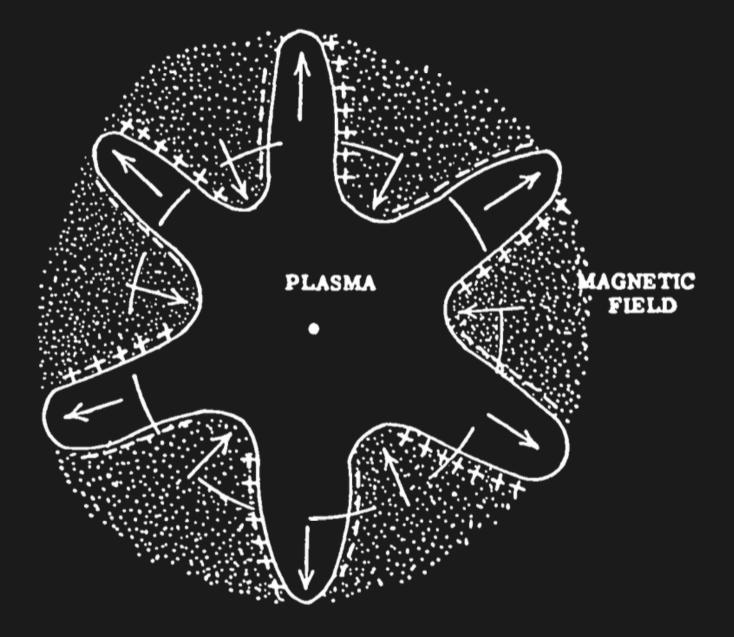
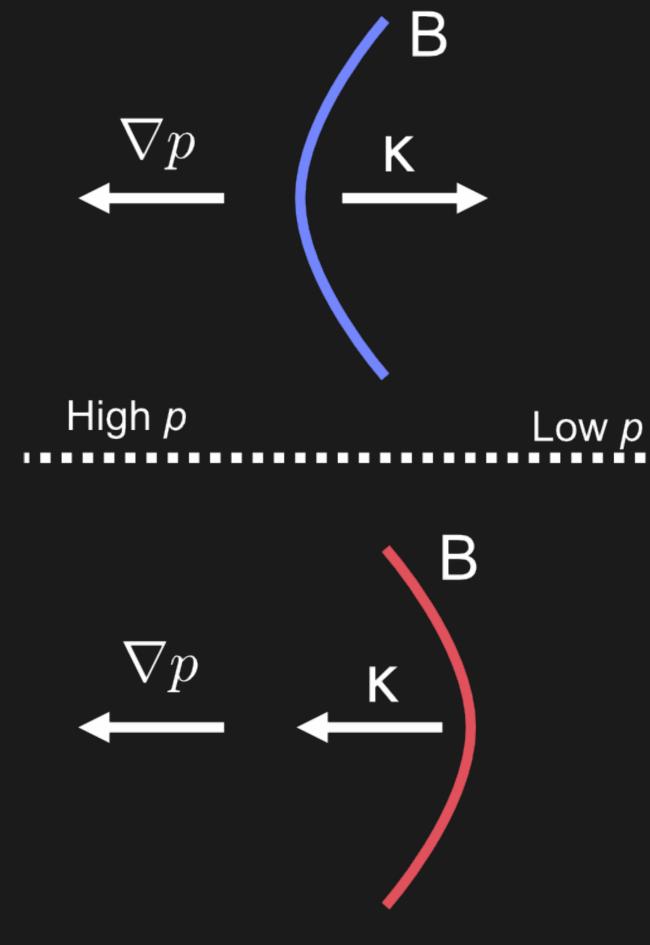


FIG. 30. Schematic illustration of the high-m flute instability in a simple mirror field, showing polarization fields and directions of unstable motion.

**Post 1987** 

#### Good curvature



Bad curvature



#### Drift waves and turbulence are ubiquitous in fusion plasmas

- Drift waves are unstable when there exists a density gradient, a background field, and finite resistivity
- "Universal" instability see in any laboratory plasma
- Instabilities drive turbulence
  - -> seen in any thermal fusion plasma
- Do drift waves interact with interchange modes?
  - -> study on the Large Plasma Device



#### The Large Plasma Device (LAPD) is a flexible, accessible, basic plasma science device







such bright



wow



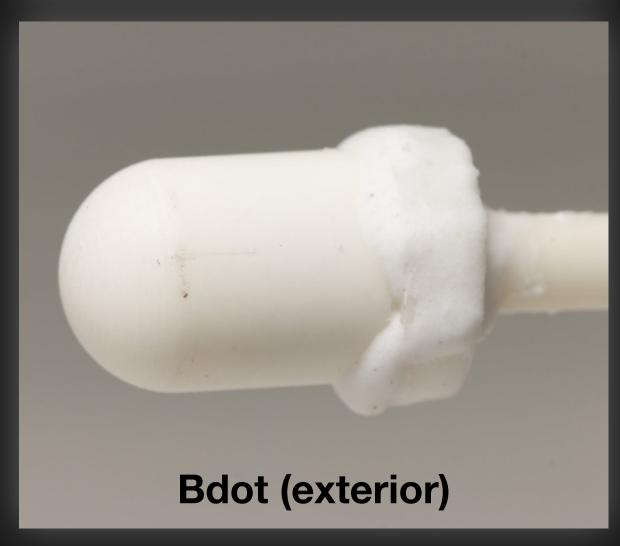
much pink

WOW

#### Langmuir and magnetic fluctuation (Bdot) probes are the workhorses of LAPD science

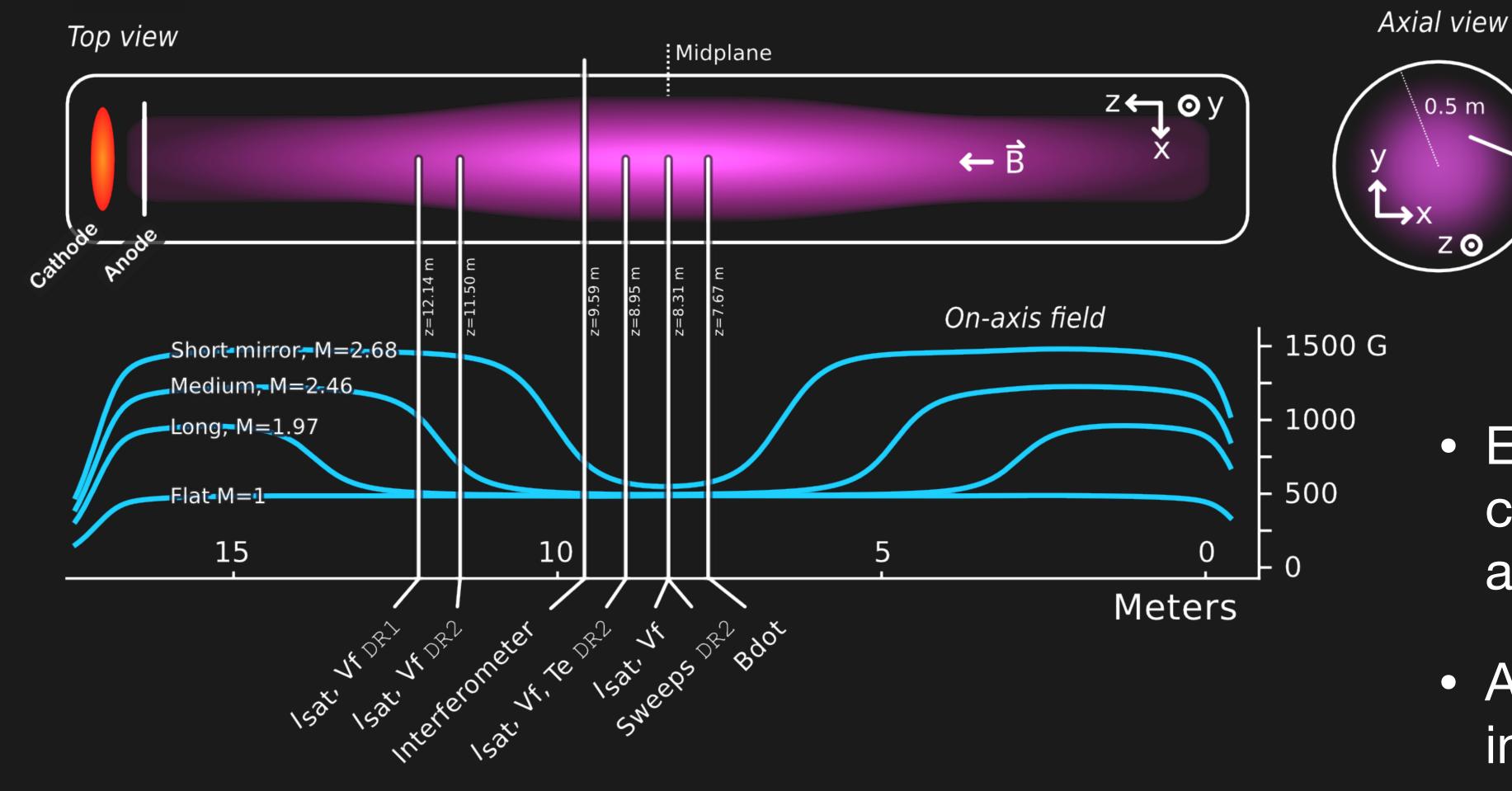
- Langmuir probes give you:
  - Density via ion saturation current: Isat  $\propto n_e \sqrt{T_e}$
  - Temperature via sweeps or triple probes
  - Potential via sweeps or floating potential
- Magnetic field fluctuations via Bdot
  - Useful for identifying and studying Alfvén waves
- High spatial resolution and reach: can measure (pretty much) anywhere in the LAPD







#### We made mirrors in the LAPD to study interchange modes and drift waves



Expect low k<sub>||</sub> modes — focus on central cell

 Expect instabilities to change with mirror ratio and length

κ θ, EDD

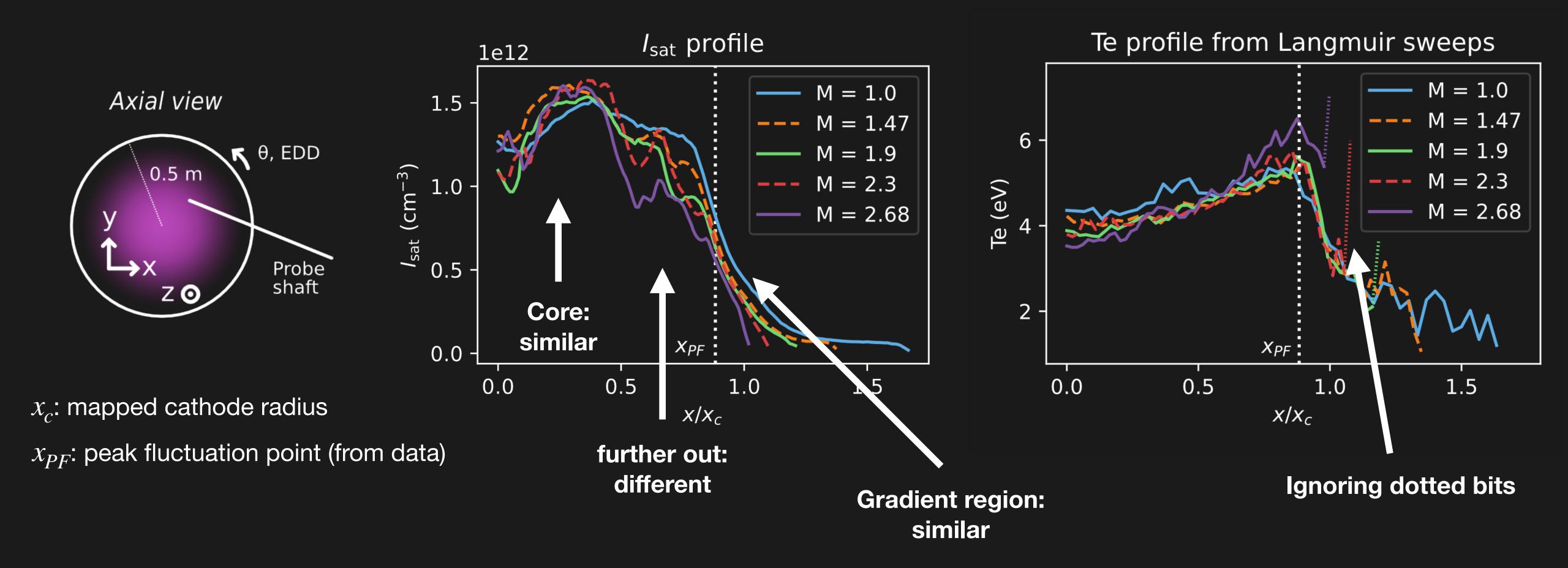
Probe shaft

Attempt to diagnose instabilities and modes present

Travis and Carter, JPP 2025

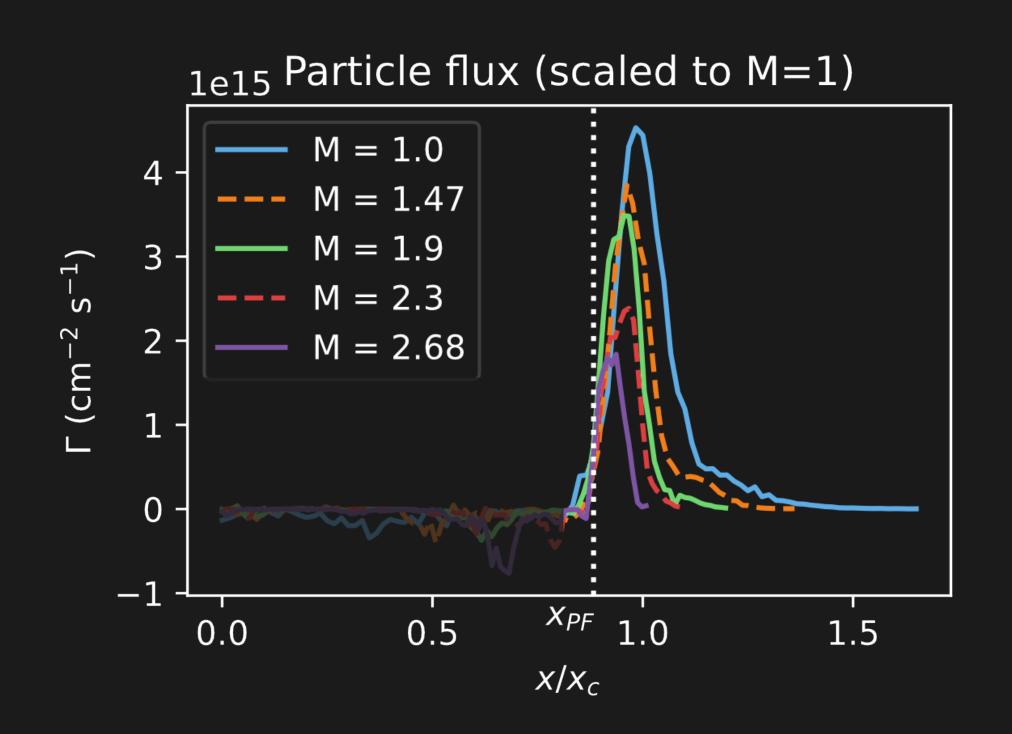


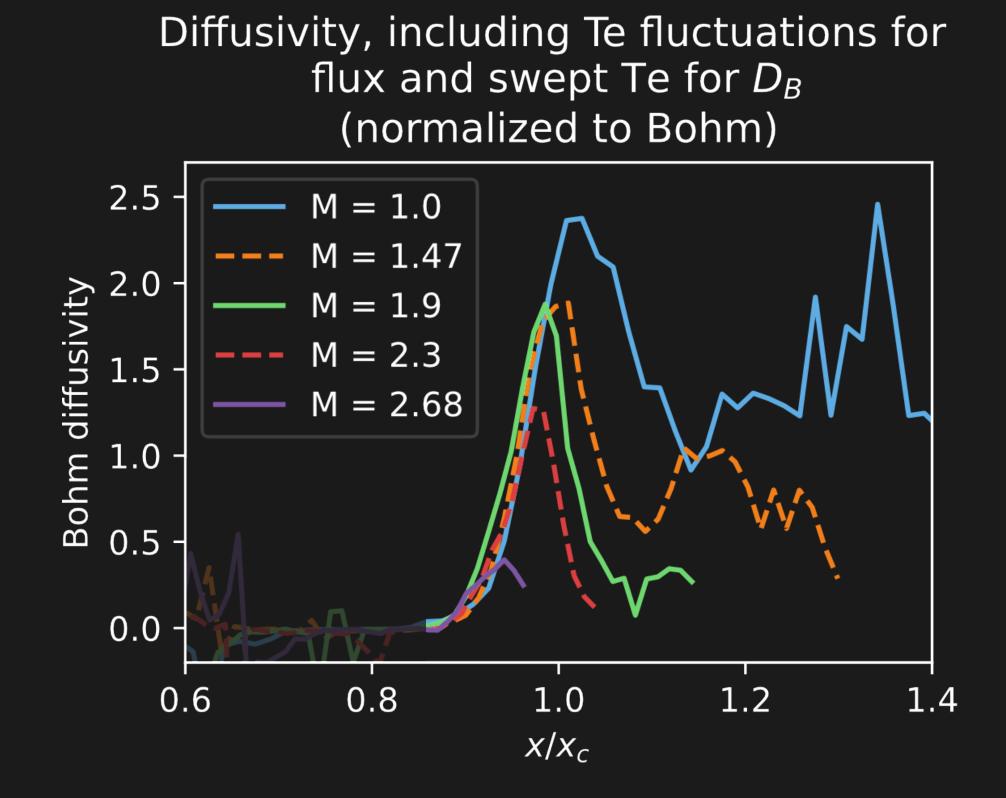
#### Changing mirror ratio: core profiles and gradient region are similar, some differences throughout





#### We observe an unexpected decrease in particle flux and diffusivity

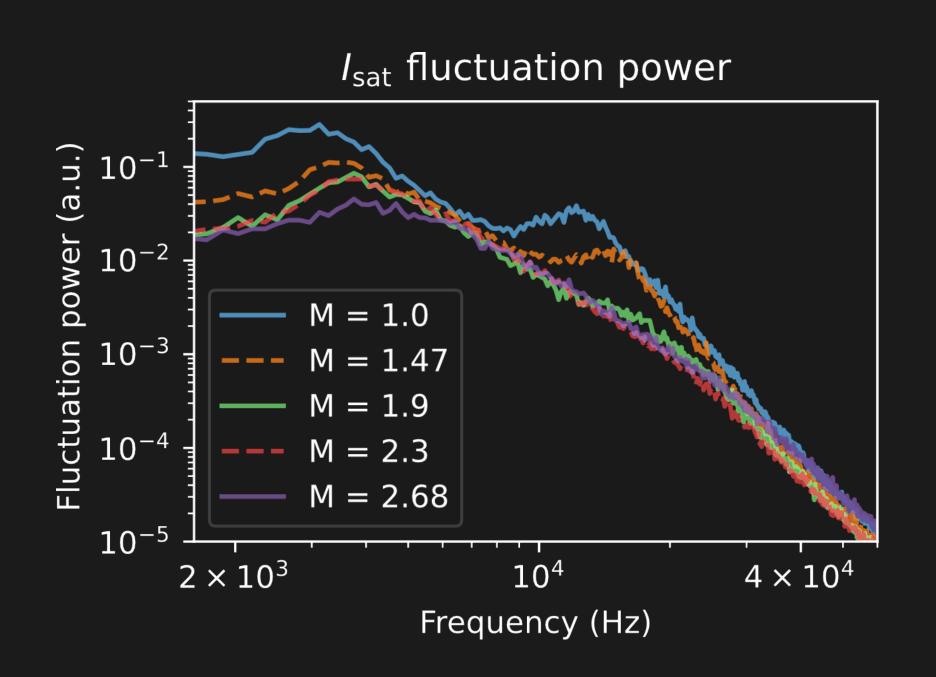




Expect increased instability drive with increased curvature

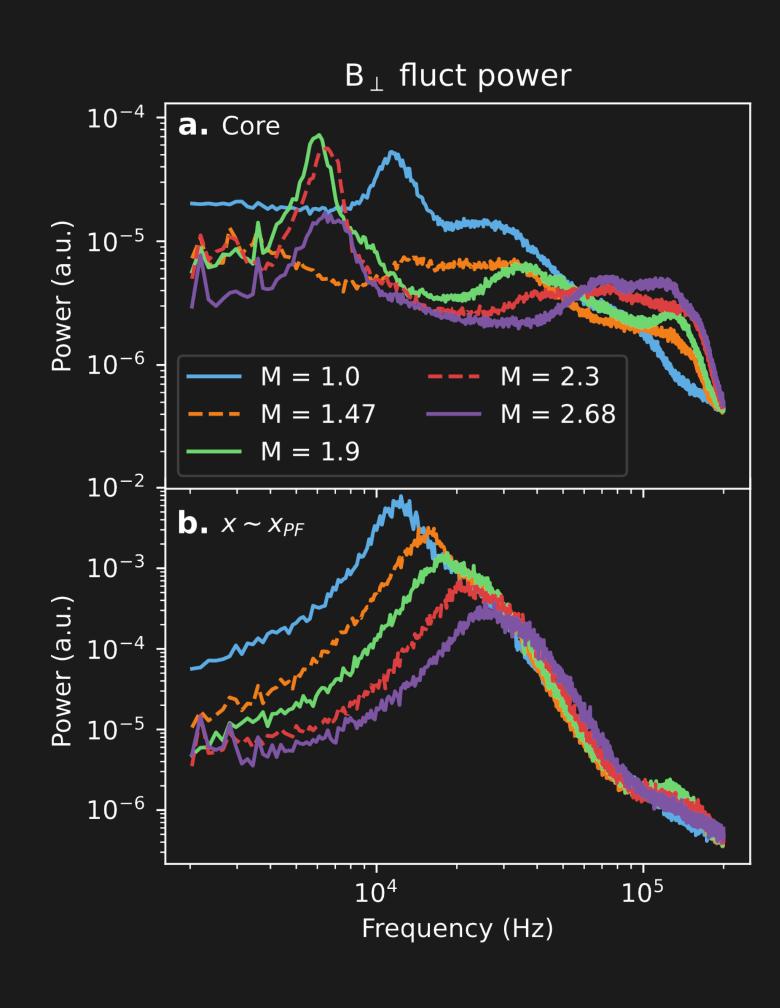


#### Drift-Alfvén waves are clear on the fluctuation spectra; 3-6 kHz unclear



- 10+ kHz peaks: likely drift-Alfvén waves
- Peaks 3-6 kHz: open question





#### No interchange instability is seen in these mirrors; mysteries remain

- Performed experiments in a range of mirror ratios and lengths
- No evidence for the interchange instability (many stabilization mechanisms)
- See an unexpected decrease in particle flux and diffusivity
- To study interchange on the LAPD, likely need to explore higher- $\beta$  plasmas

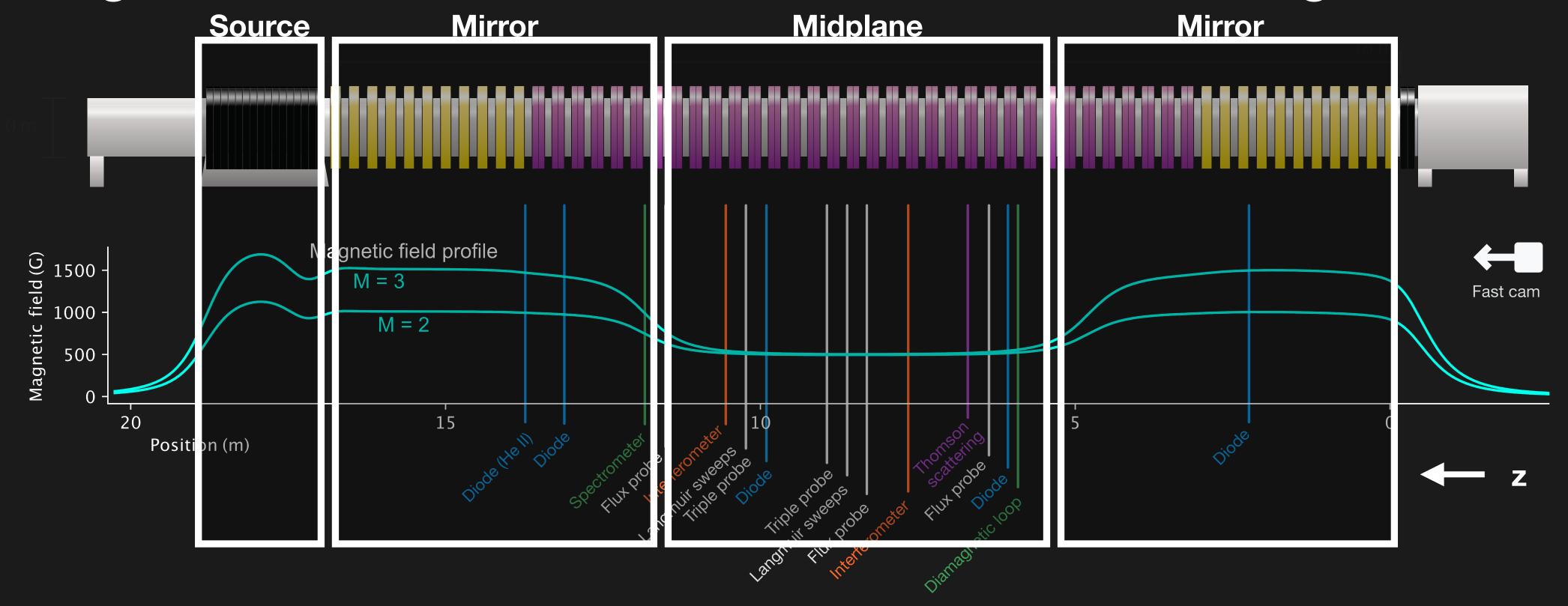
Broader exploration of parameter space would be beneficial

How?

Machine learning



#### The Large Plasma Device is an ideal machine for collecting data for ML



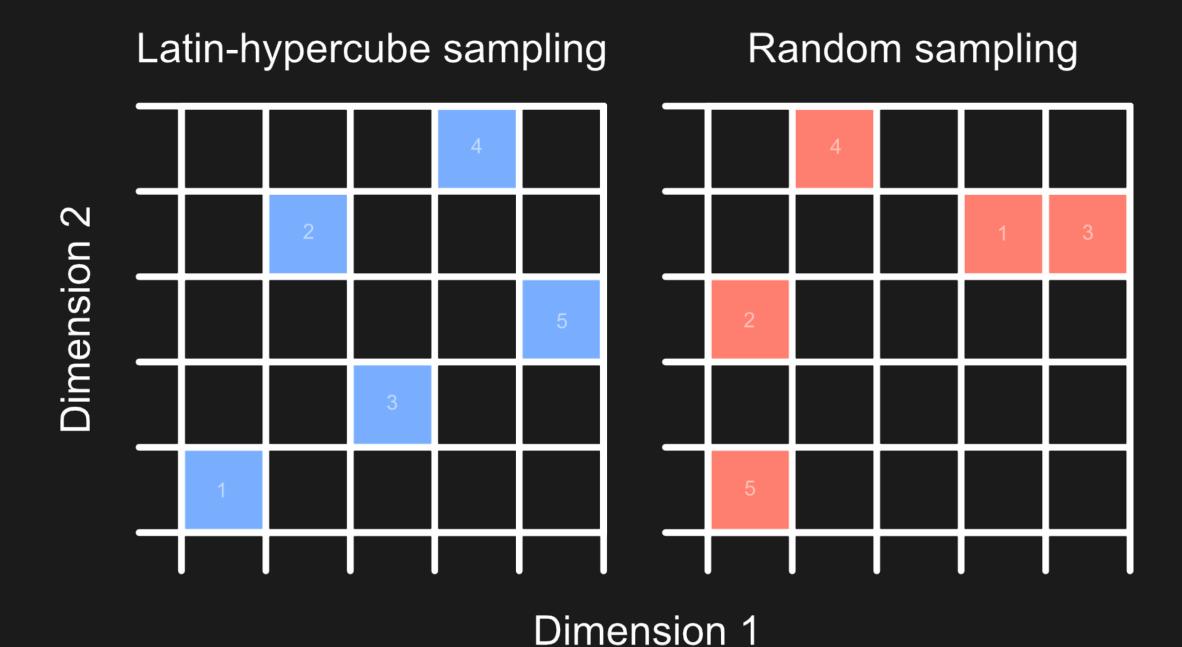
- High rep rate: 0.25-1 Hz rep rate
- Flexible machine configuration

- Great diagnostic access
- High-resolution probe measurements

## For profile optimization, LAPD configurations were randomly sampled

- Goal: determine machine settings for optimal axial profiles at high density
- Machine controls and actuators have a nonlinear effect on plasmas
- Randomization is necessary but risky
- Collected 44 randomized dataruns (67 runs total)

136k possible machine configurations



Bsource,
Bmirror,
Bmidplane,
Gas puff settings,
Discharge voltage

Travis, Bortnik, and Carter, arXiv:2503.09868



## Neural networks (NNs) are used to learn time-averaged Isat

- NNs are "universal function approximators"
  - they can fit any function given sufficient capacity (200k parameters for mine)
- NNs will learn the trends necessary to reduce error

#### Machine learning is just fancy curve fitting

Input: machine settings



Output: time-averaged I<sub>sat</sub> (10-20 ms)

#### **Test**

- Held out 8 dataruns
- Used to evaluate model on unseen machine configurations

#### Train

- 80% of remaining 59 runs
- Model trains on this set

#### **Validation**

- 20% of remaining 59 runs
- To prevent overfitting



#### Uncertainty can be quantified using the NLL loss and ensembles

$$\mathcal{L}_{\beta-\text{NLL}} = \frac{1}{2} \left( \log \sigma_i^2(\mathbf{x}_n) + \frac{\left(\mu_i(\mathbf{x}_n) - y_n\right)^2}{\sigma_i^2(\mathbf{x}_n)} \right) \text{StopGrad} \left( \sigma_i^{2\beta} \right) \qquad \text{Model } i \\ \text{Example } n \\ \text{MSE scaled by uncertainty} \qquad \text{Example-specific learning rate}$$

• Break uncertainty into intrinsic randomness (aleatoric) and model-based (epistemic) uncertainty

**Aleatoric uncertainty** 

**Epistemic uncertainty** 

$$\langle \sigma_i^2(\mathbf{x}) \rangle$$

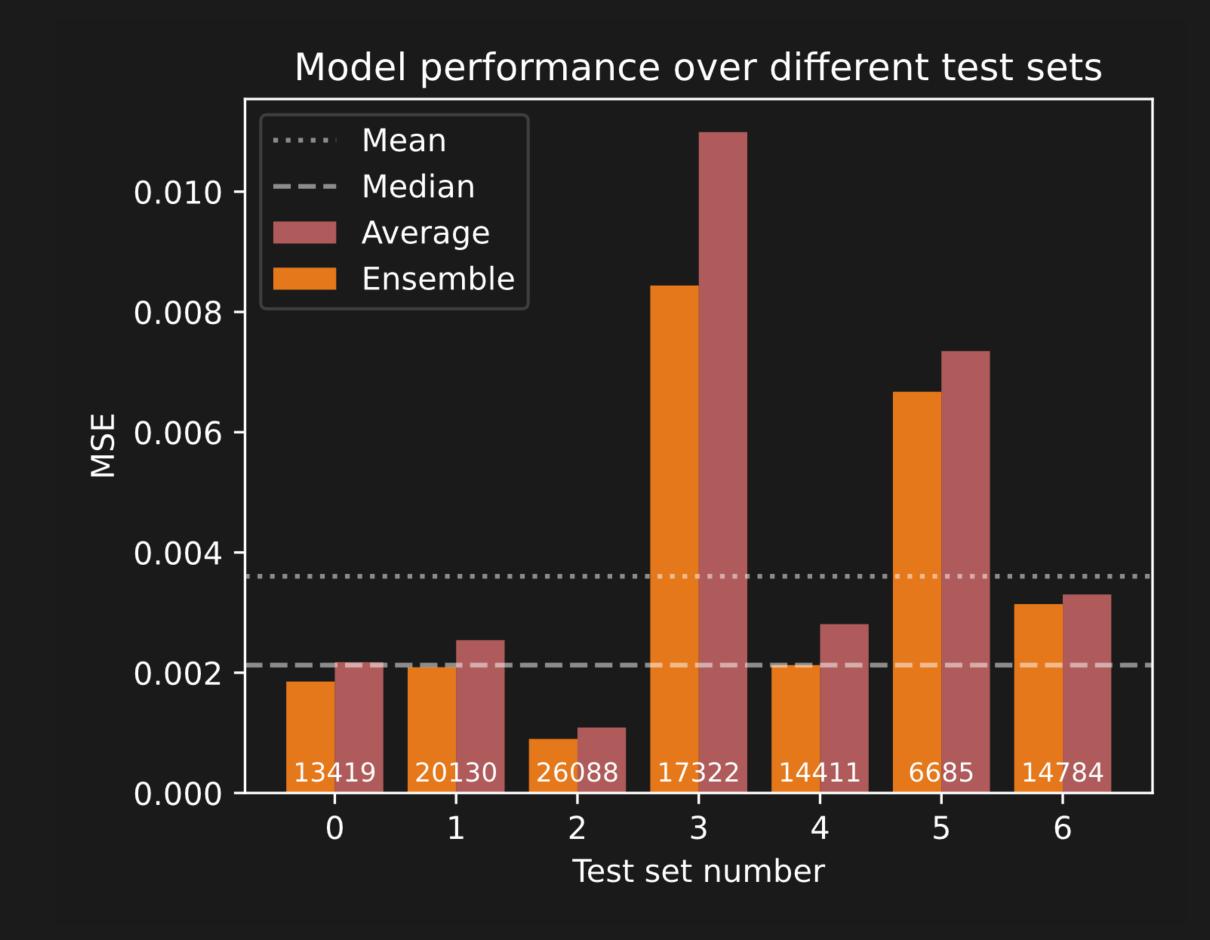
$$\langle \mu_i^2(\mathbf{x}) \rangle - \mu_*^2(\mathbf{x}) = \mathbf{Var}[\mu_i(\mathbf{x})]$$

$$\mu_*(\mathbf{x}) = \langle \mu_i(\mathbf{x}) \rangle$$

• The uncertainty quantification done here is uniquely thorough

#### Cross-validation: choice of test set can have a big impact on estimated error

- Test set 0 was hand picked for diversity
- Changing test set can dramatically change the measured error
- Test set performance improves when using ensembles
- Will use the median RMSE as a guide for estimating error

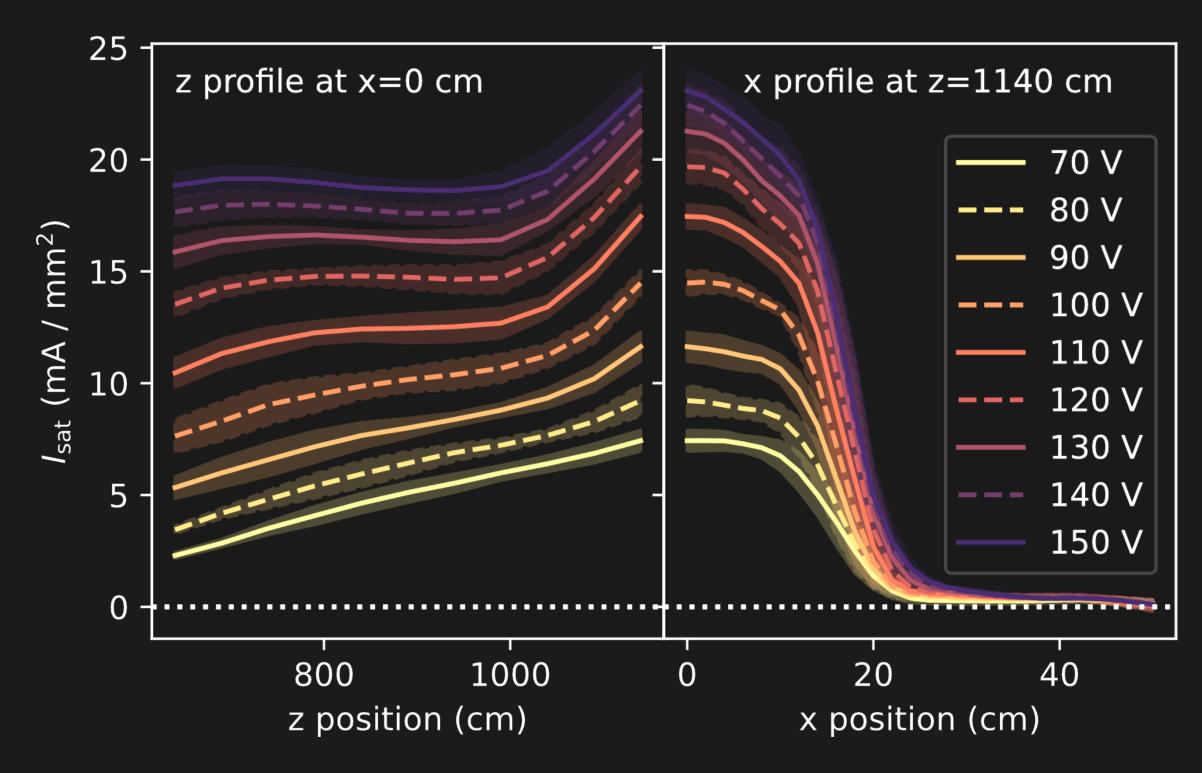




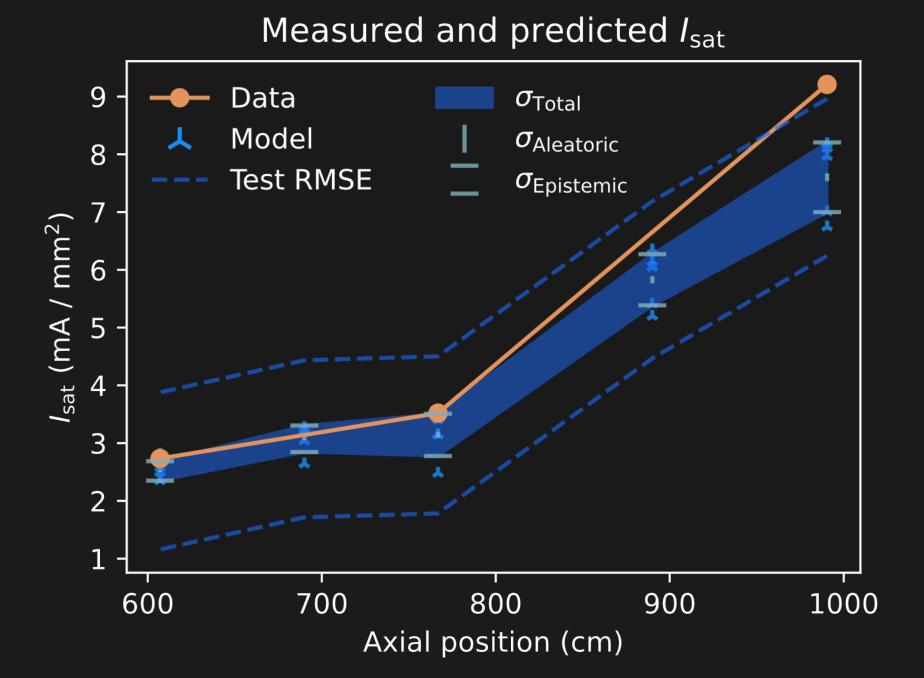
#### Inferred trends are intuitive and predictions agree with LAPD data

Discharge voltage scan: agrees with intuition





1 kG flat field, 38 ms gas puff



500G source, 500G mirror, 1500G midplane, 90V gas puff, 150V discharge, 38 ms gas puff

 Probes misaligned, but we can predict off-axis no problem



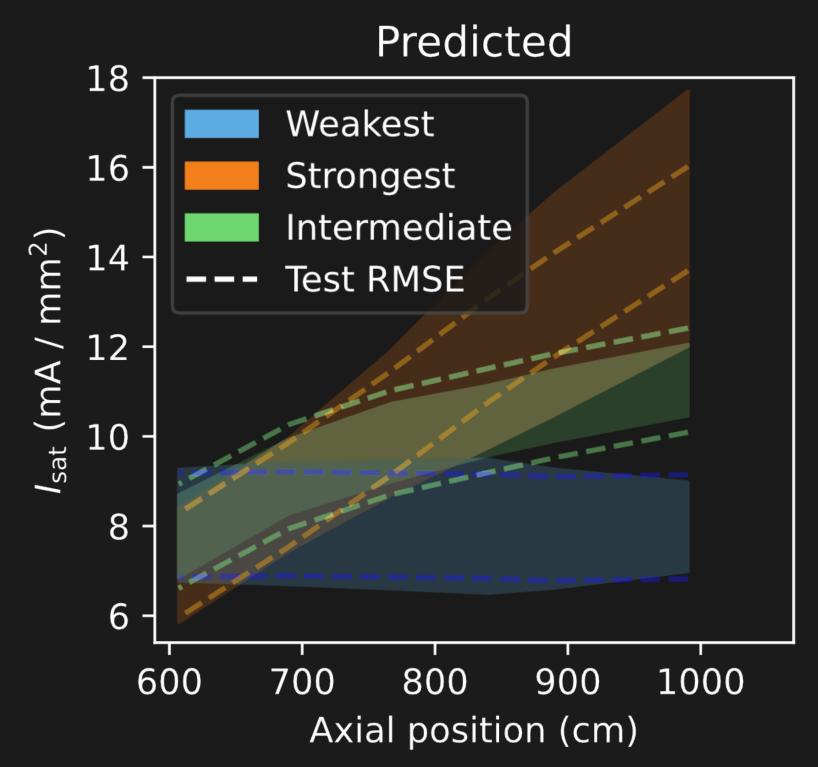
#### Model gives us optimized profile with constraints on Isat

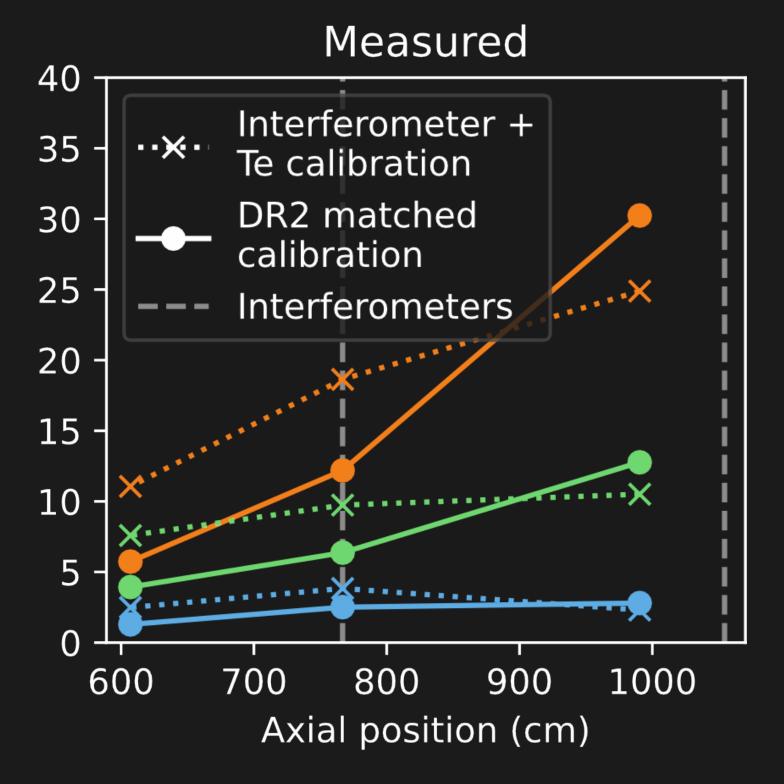
- Important for LAPD: high densities with a flat profile
  - Comprehensive search for best and worst axial variation

Inputs = 
$$\underset{\text{Inputs}\neq z}{\operatorname{arg\,min\,sd}}(I_{\text{sat}}|_{x=0})$$

 Also constrain search for l<sub>sat</sub> > 7.5 mA / mm<sup>2</sup>







Intermediate case: model learns trends in addition to extrema

## We can predict Isat anywhere\* in any\* mirror configuration in the LAPD

\* as long as it is reasonably within the bounds of the training data (and your standards aren't too high)

- Optimized the LAPD given any function of Isat
- This work is quite novel:
  - trend inference using NNs
  - random generation of machine configurations
  - thorough uncertainty quantification



github.com/physicistphil/lapd-isat-predict

What if we want to reconstruct any input or diagnostic, not just Isat?

**Energy based models** 



## Energy-based models learn a probability distribution over the data

$$p(x) \sim e^{-E(x)}$$

<- generative ML model

Data → (NN) → E

#### Sampled via Langevin dynamics:

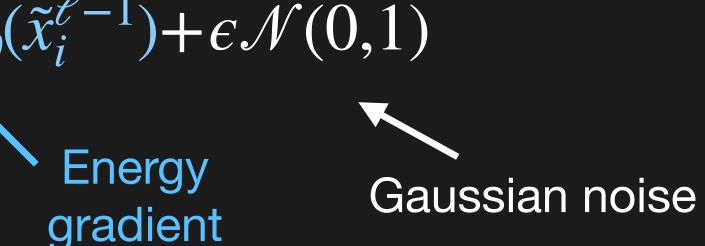
$$\tilde{x}_i^{\ell} \leftarrow \tilde{x}_i^{\ell-1} - \frac{\epsilon^2}{2} \nabla_x E_{\theta}(\tilde{x}_i^{\ell-1}) + \epsilon \mathcal{N}(0,1)$$

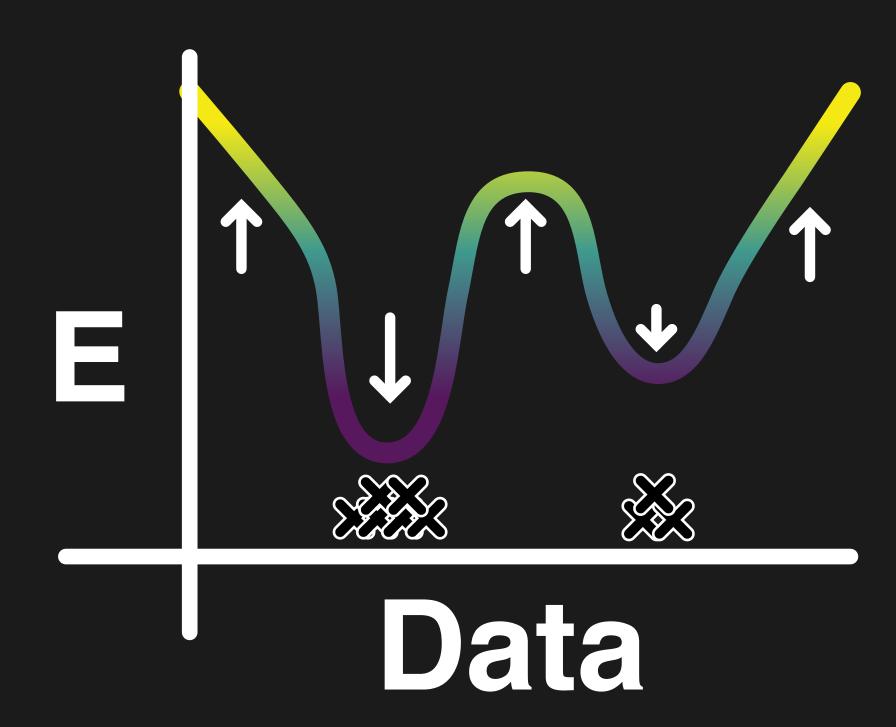
 $\tilde{x}$ : sample

 $\ell$ : step in the MCMC chain

*i*: example number

 $\epsilon$ : step size

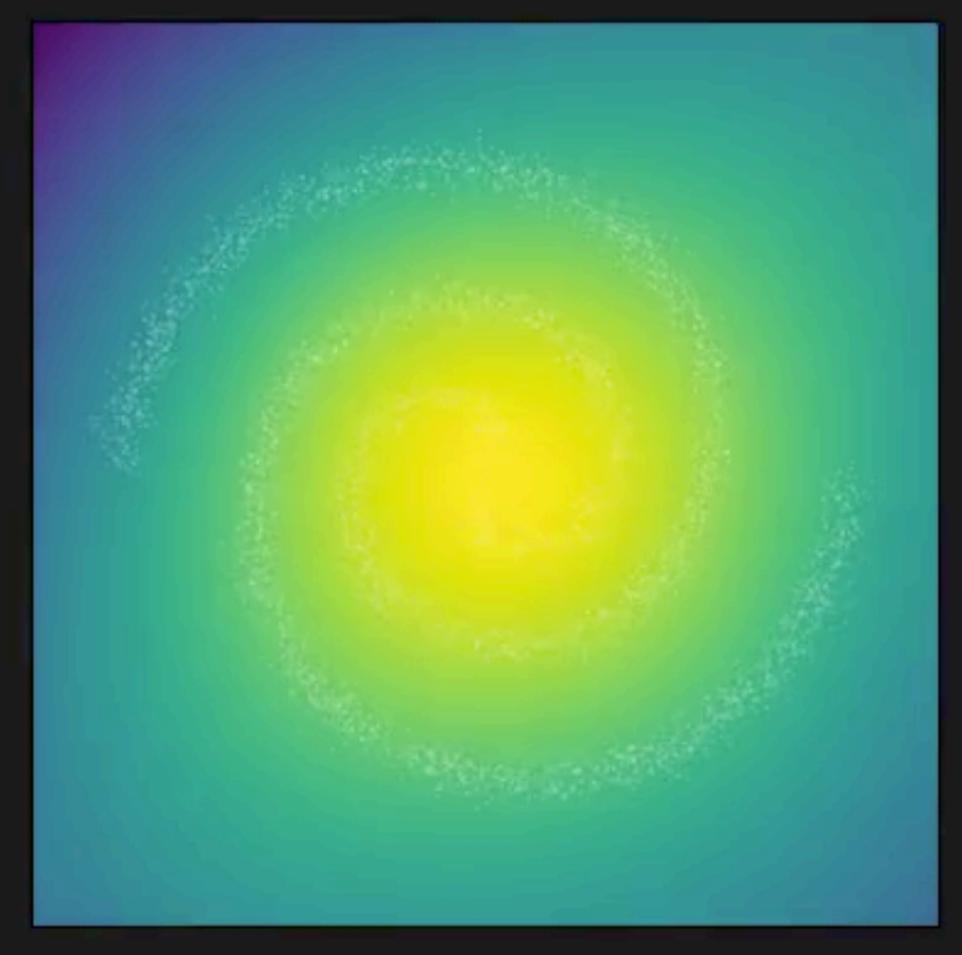




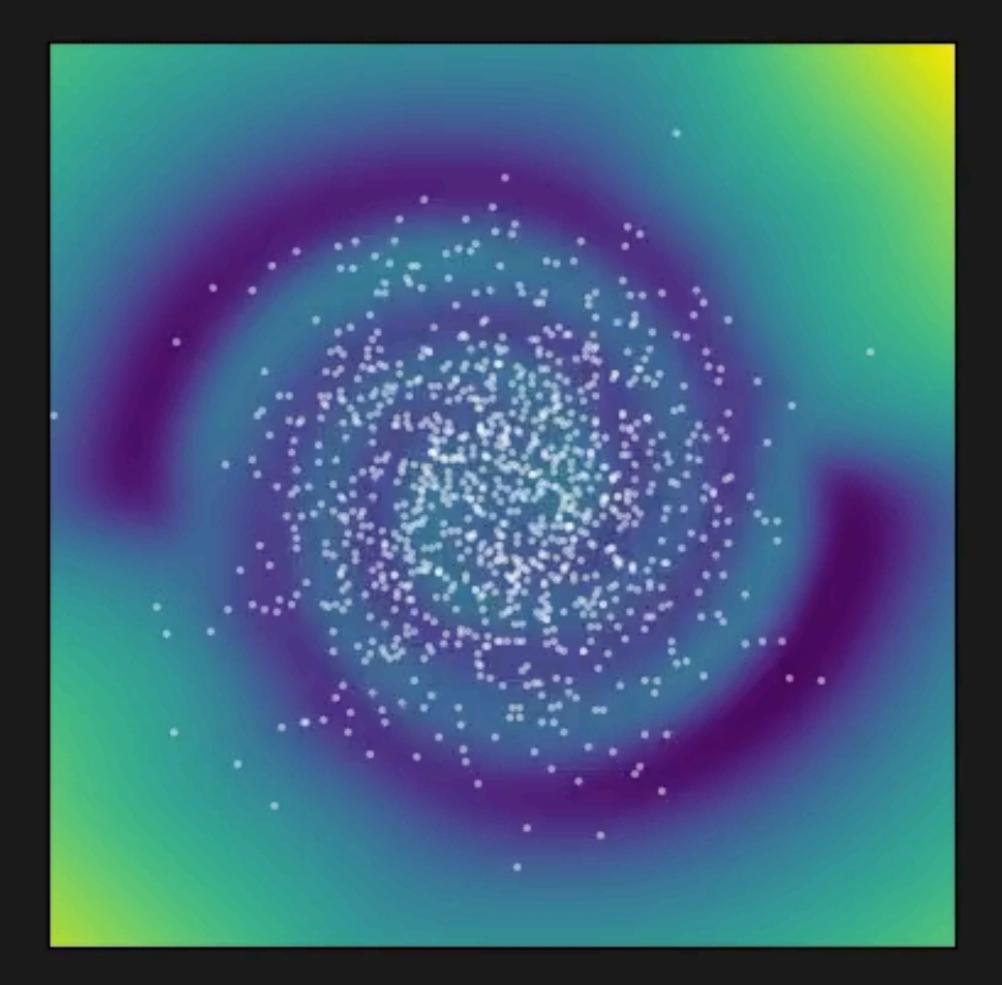
Sampling is inference!



## Training an EBM molds the surface, sampling finds the minima







(Unconditional) Sampling



## For this study: used the same dataset (with time series) and a larger model

- Input: machine settings, time series data

  MN

  Output: energy
- 699 inputs into the model (up from 12)
  - Time series: discharge I and V, diodes, interferometer, Isat
  - Magnetic field, gas info, probe positions, flags
- Model: ~14.7 million parameters
- Utilized CNNs and attention (transformer-like) blocks
- Multi-modal model: intermediate and hybrid fusion



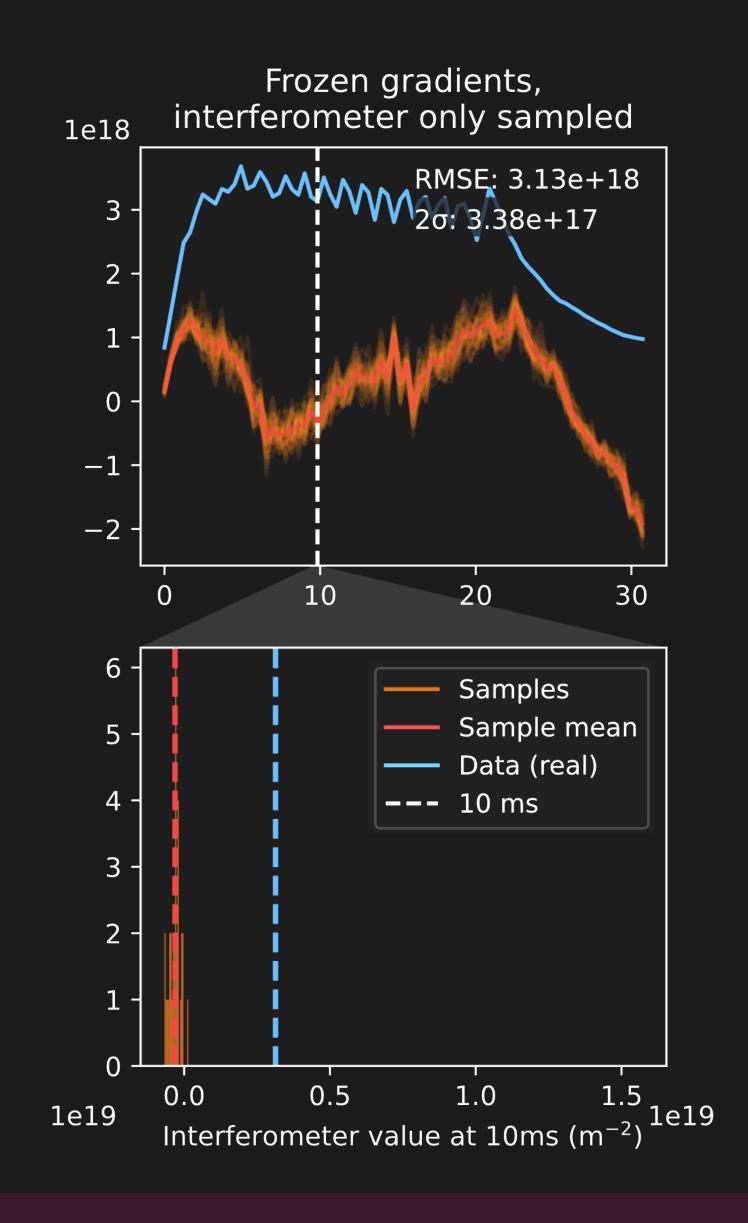
## Conditional sampling performed by freezing gradients performs poorly

# Ifo $\sim p(\text{Ifo | All other inputs})$

$$\tilde{x}_i^{\ell} \leftarrow \tilde{x}_i^{\ell-1} - \frac{\epsilon^2}{2} \nabla_x E_{\theta}(\tilde{x}_i^{\ell-1}) + \epsilon \mathcal{N}(0,1)$$

Freeze conditional inputs on real data

- Approach used in the literature for conditional sampling
- Yields unphysical results: negative interferometer signals



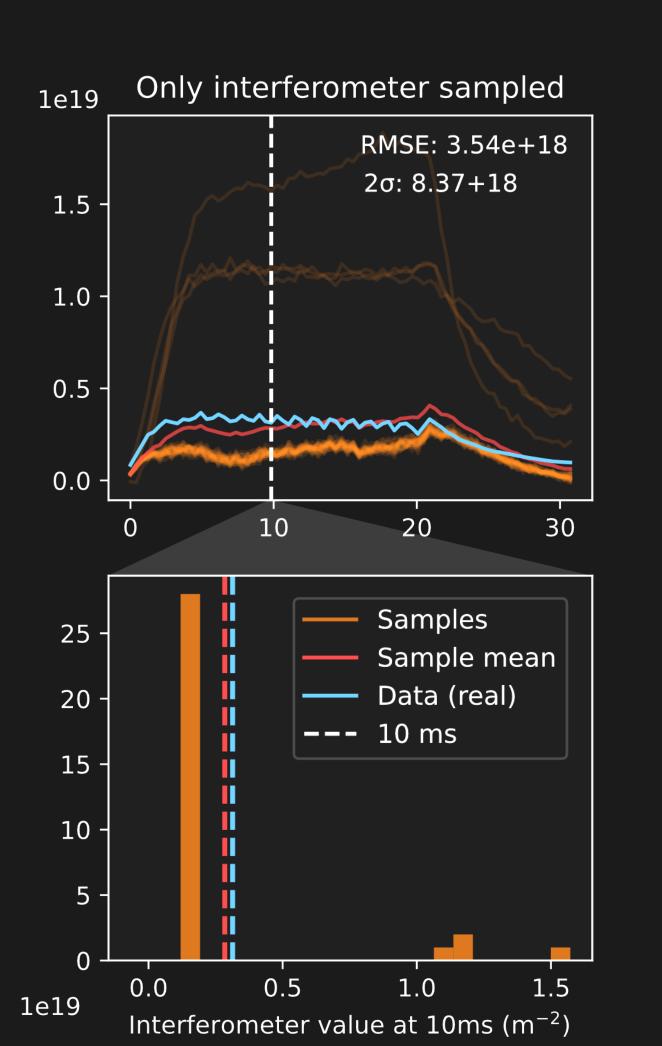


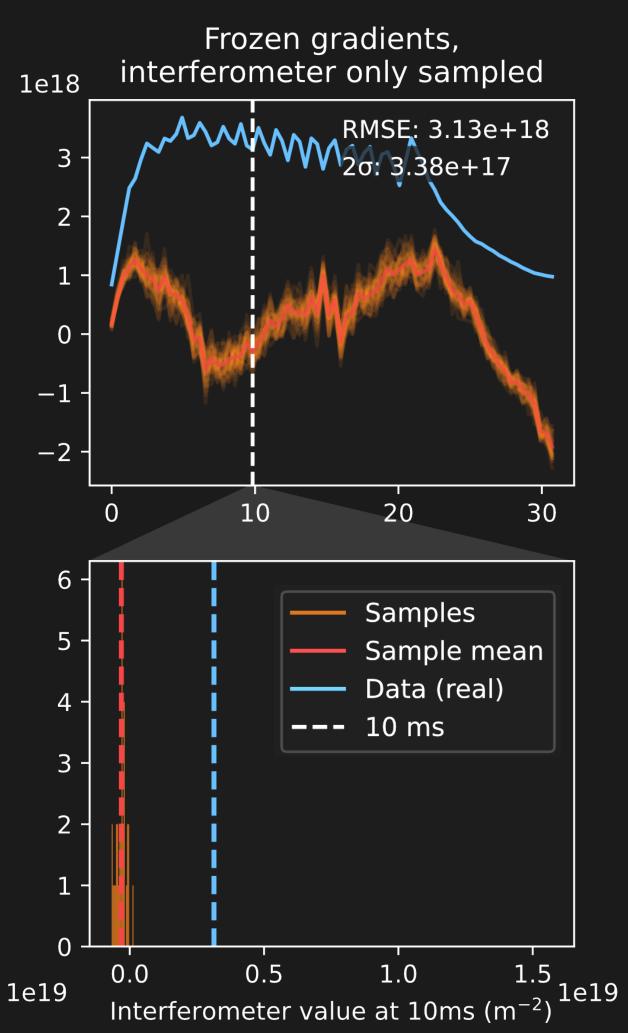
## Modifying the energy function for conditional sampling works well

$$E_{\text{cond}}(\tilde{x}) = E(\tilde{x}) + F(\tilde{x}), \quad F(\tilde{x}) = \left(\frac{\tilde{x} - x_i}{2\epsilon}\right)^2$$

$$p(\tilde{x}) \sim e^{-E(\tilde{x})}$$
 —> constraining samples via Gaussian

- Generated realistic samples
- Distribution is reasonable
- Novel method in ML community
- EBMs are composable

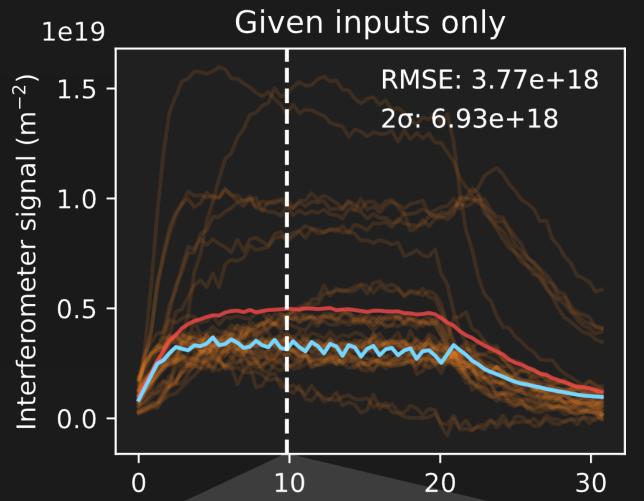


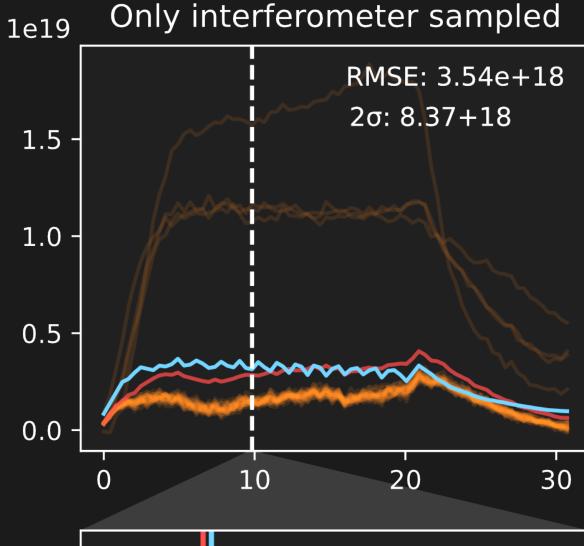




## Supplying additional inputs improves diagnostic reconstruction

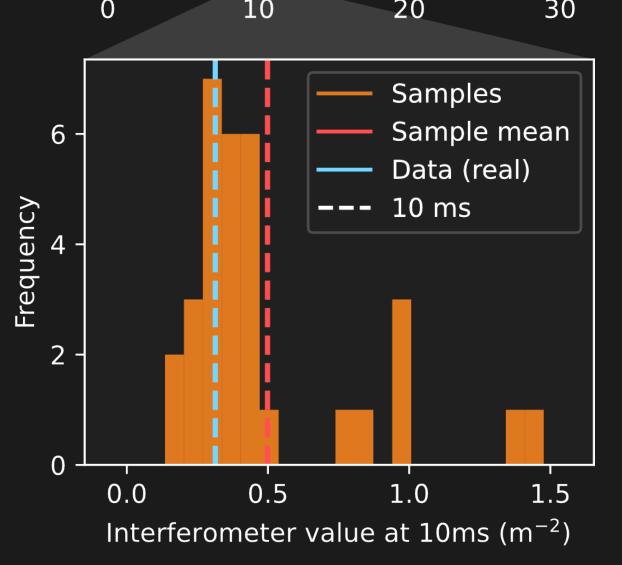
| Given:          | LAPD settings only    | All signals           |  |
|-----------------|-----------------------|-----------------------|--|
| RMSE (test set) | $4.12 \times 10^{18}$ | $2.91 \times 10^{18}$ |  |
| RMSE (DR2_02)   | $3.77 \times 10^{18}$ | $3.54 \times 10^{18}$ |  |
|                 |                       |                       |  |
|                 | Improves              |                       |  |

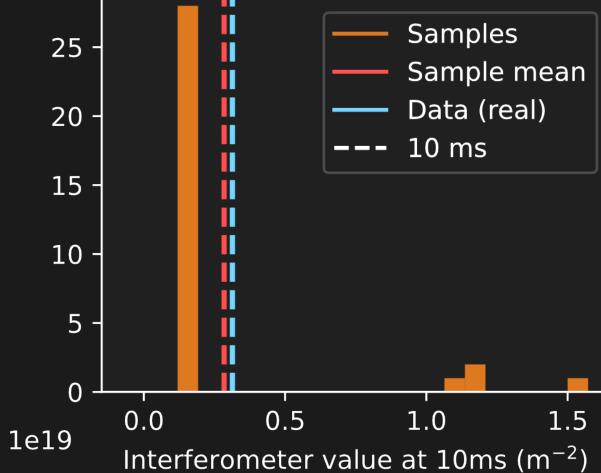






- More signals better constrain the interferometer distribution
- Get a free uncertainty metric

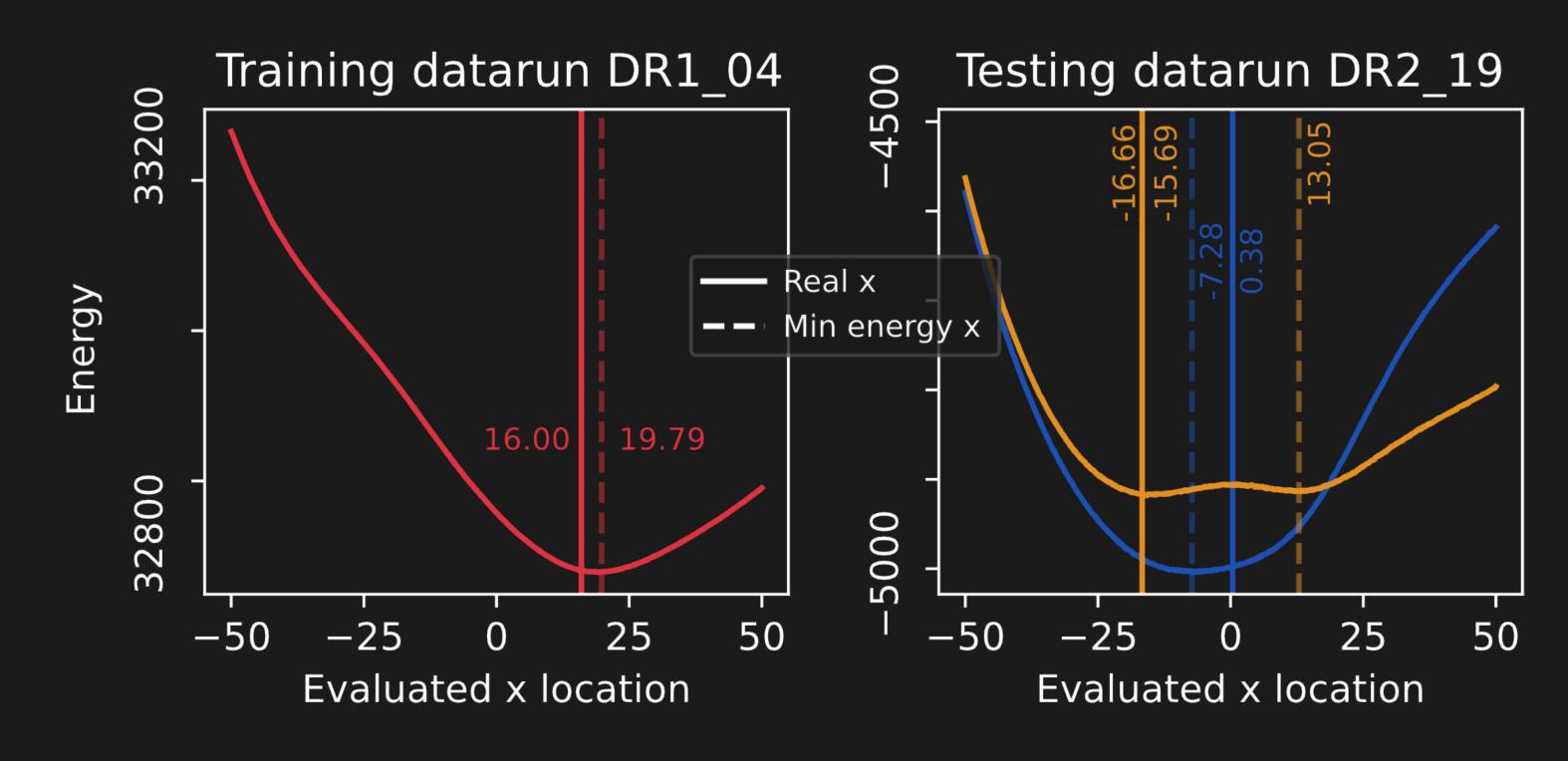




## Insights may be found by directly evaluating the energy function

- Evaluating energy over probe position
- Symmetry in I<sub>sat</sub> signals
- Relationships need not be invertible
- Symmetry sometimes is not observed
  - -> real or model issue?

#### Energies scanned over x





#### Energy-based models are an incredibly flexible way of modeling data

- Demonstrated diagnostic reconstruction with any combination of inputs
- Modified the energy function to generate good samples
- Found symmetries via direct evaluation of the energy function
- Very novel work I've only found one other use of EBMs (particle physics)
- Many potential improvements:
  - more data, more diagnostics, better probe calibration (or not)
  - track cathode condition (already have a 29M+ shot dataset)
  - combine with simulations



#### Mirror machines and machine learning can be a faster way for fusion power

 Undertook a study of mirror turbulence, optimized the LAPD using ML, reconstructed diagnostics using EBMs

# I started this PhD thinking we might be able to speed up fusion science using ML I now see a trajectory where that's possible

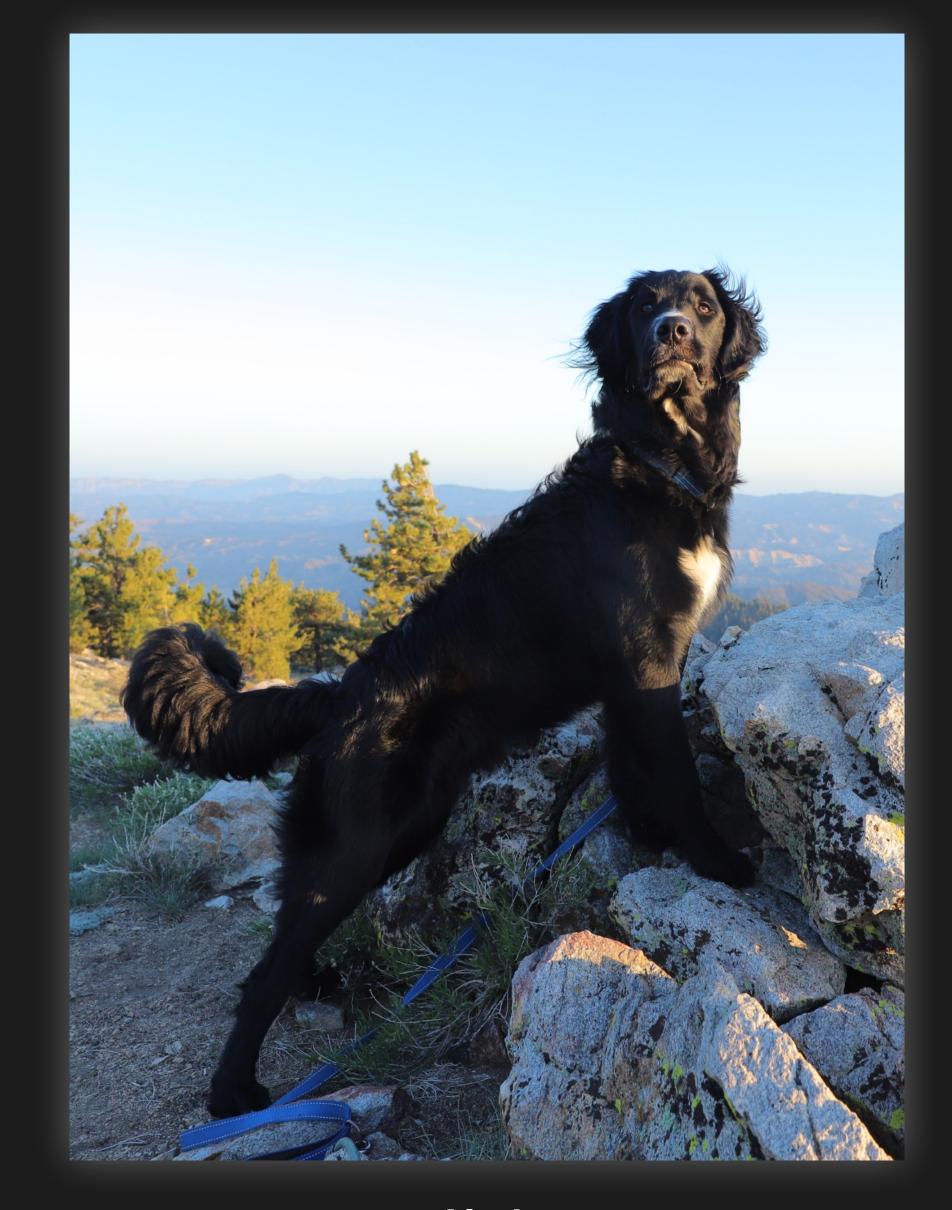
- We now have a way of extracting trends and optimizing devices from data
  - May require restructuring our scientific programs
  - Can combine experiment with simulation using EBMs
- If we iterate on physics faster, we'll need to iterate our devices faster





#### Fun stats

- Data collected: 12+ TB
- Models trained: >1749
- Taxpayer dollars <del>wasted</del> utilized: ~\$0.5M (thanks everyone!)
- Photos taken: 113,065 (4.9 TB)



Altair



#### Mirror-turb: Loss cone instabilities

- Alfvén ion cyclotron (AIC) instability: Alfvén waves coupling to the ion cyclotron motion
- Drift cyclotron loss cone (DCLC) instability:



#### Mirror-turb: Stabilization mechanisms for interchange

- Line-tying
- Finite Larmor radius effects
- Azimuthal flow shear
- New electrons trapped by the ambipolar potential
- We are looking at a large aspect-ratio mirror

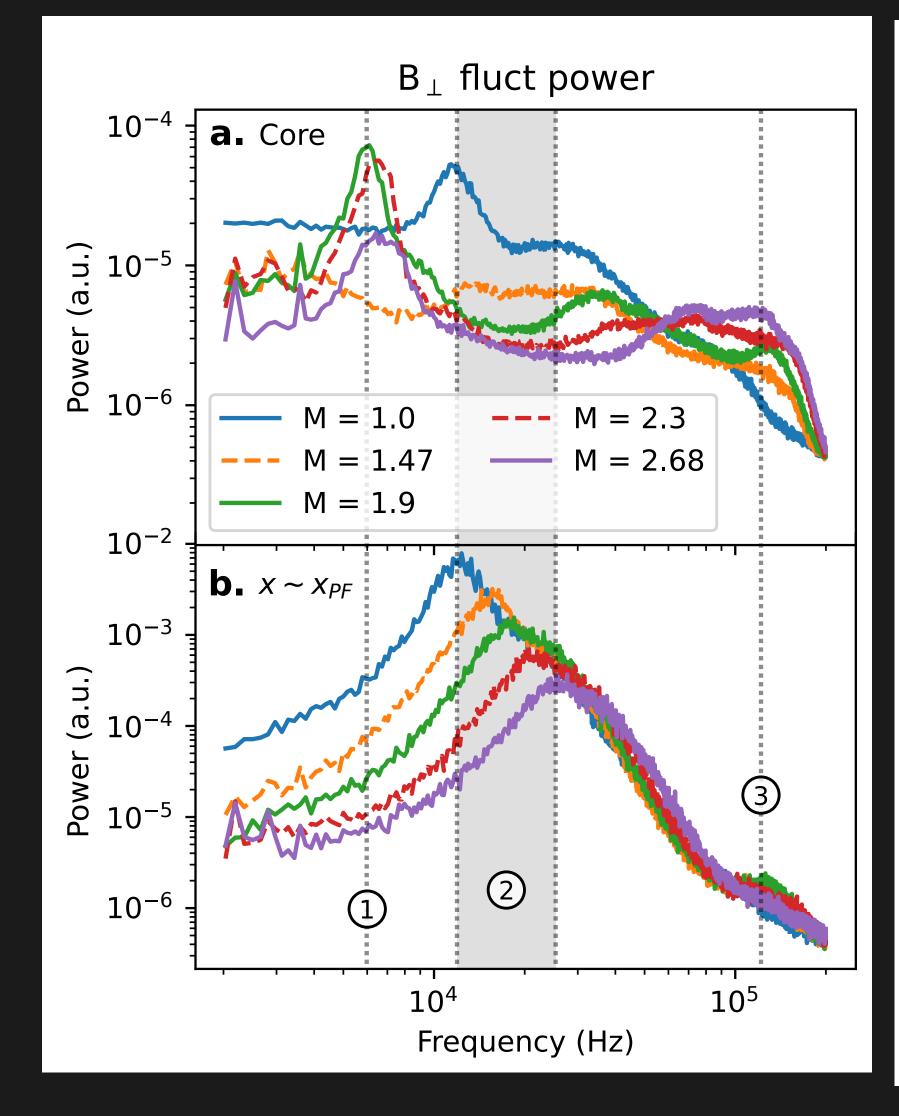


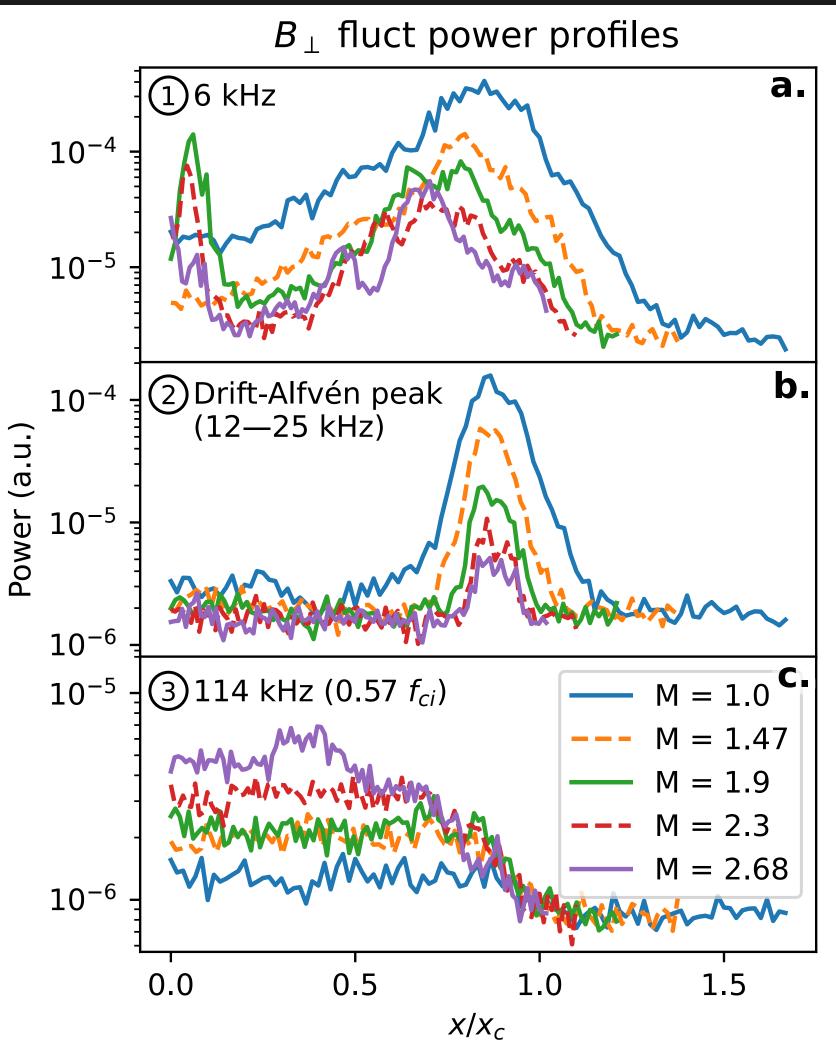
## Mirror-turb: Mirror: plasma parameters

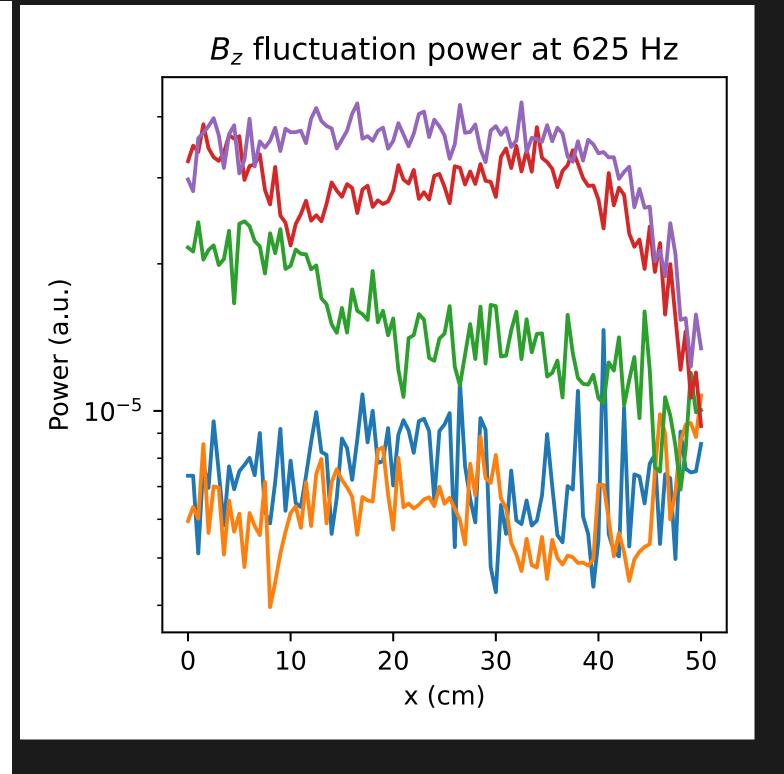
| Cathode radius (M=1)        | $x_c$                      | 30                    |                      | cm                 |
|-----------------------------|----------------------------|-----------------------|----------------------|--------------------|
| Machine radius              | R                          | 50                    |                      | cm                 |
| Plasma length               | L                          | $\sim 17$             |                      | m                  |
| Primary species             |                            | He-4 1+               |                      |                    |
| Electron-helium mass ratio  |                            | $1.37 \times 10^{-4}$ |                      |                    |
| Neutral pressure            |                            | $6-20 \times 10^{-5}$ |                      | Torr               |
| Quantity                    |                            | Core                  | $x = x_{PF}$         | Unit               |
| Density                     | $n_e$                      | $1.25 \times 10^{12}$ | $0.6 \times 10^{12}$ | $\mathrm{cm}^{-3}$ |
| Ion temperature             | $T_i$                      | $\sim 1$              |                      | eV                 |
| Electron temperature        | $T_e$                      | 4                     | 5                    | eV                 |
| Beta (total)                | β                          | $9 \times 10^{-4}$    | $6 \times 10^{-4}$   |                    |
| Midplane magnetic field     | $B_{ m mid}$               | 500                   |                      | G                  |
| Plasma freq                 | $\Omega_{pe}$              | 10                    | 7.1                  | GHz                |
| Ion cyclotron freq          | $\Omega_{ci}$              | 200                   |                      | kHz                |
| Electron cyclotron freq     | $\Omega_{ce}$              | 1.4                   |                      | GHz                |
| Debye length                | $\lambda_D$                | 0.013                 | 0.021                | mm                 |
| Electron skin depth         | $\lambda_e$                | 30                    | 43                   | mm                 |
| Ion gyroradius              | $\lambda_{ci}$             | 5.8                   |                      | mm                 |
| Electron gyroradius         | $\lambda_{ce}$             | 0.13                  | 0.15                 | mm                 |
| Ion thermal velocity        | $\bar{v}_i$                | 6.94                  |                      | km/s               |
| Electron thermal velocity   | $\bar{v}_e$                | 1190                  | 1330                 | km/s               |
| Sound speed                 | $c_s$                      | 13.0                  | 13.9                 | km/s               |
| Alfvén speed                | $v_a$                      | 446 - 1140            | -1620                | km/s               |
| Ion sound radius            | $\rho_s$                   | 65                    | 69                   | mm                 |
| Ion-ion collision freq      | $v_{ii}$                   | 730                   | 380                  | kHz                |
| Electron-ion collision freq | $v_{ei}$                   | 6.77                  | 2.59                 | MHz                |
| Electron collision freq     | $V_{ee}$                   | 9.57                  | 3.66                 | MHz                |
| Ion mean free path          | $\lambda_{i,\mathrm{mfp}}$ | 26                    | 50                   | mm                 |
| Electron mean free path     | $\lambda_{e,\mathrm{mfp}}$ | 175                   | 512                  | mm                 |
| Spitzer resitivity          | η                          | 192                   | 146                  | $\mu\Omegam$       |



#### Mirror-turb: magnetic fluctuation breakdown

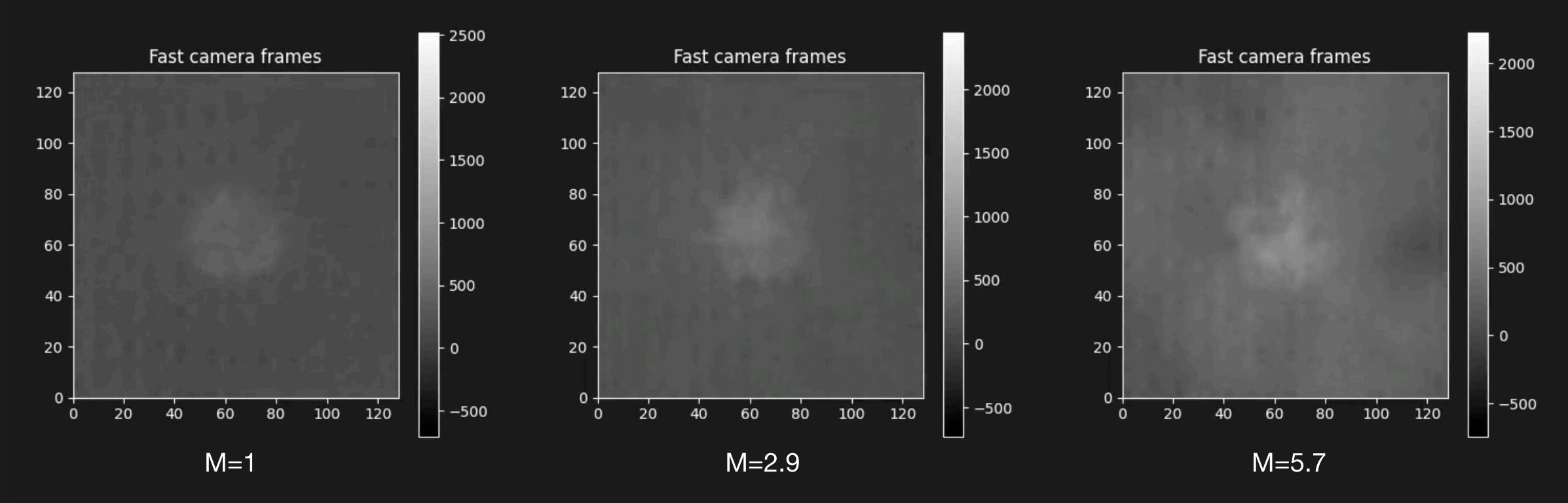








#### Mirror-turb: evidence for interchange

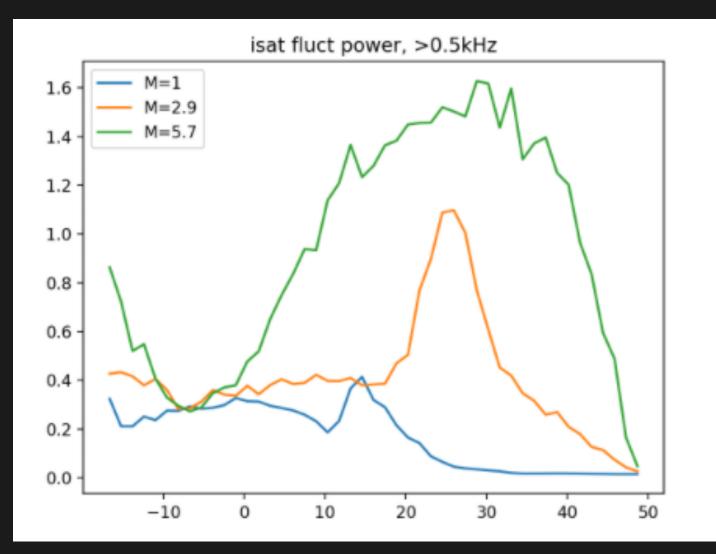


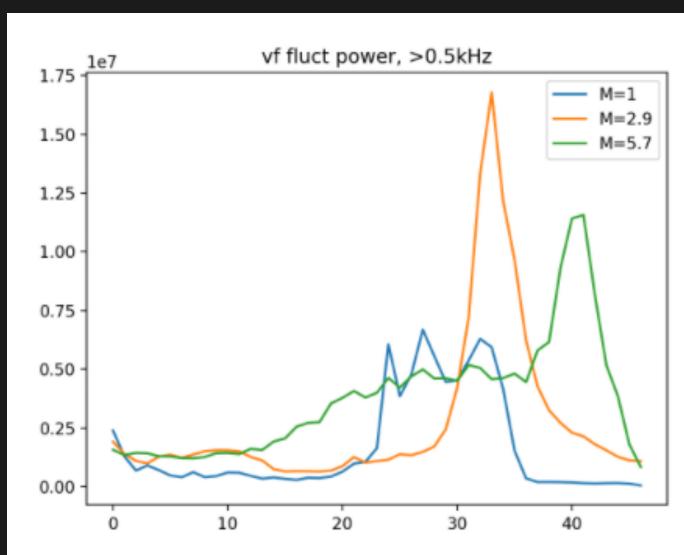
FFC, mean frame subtracted. Sample rate = 2.5 kHz

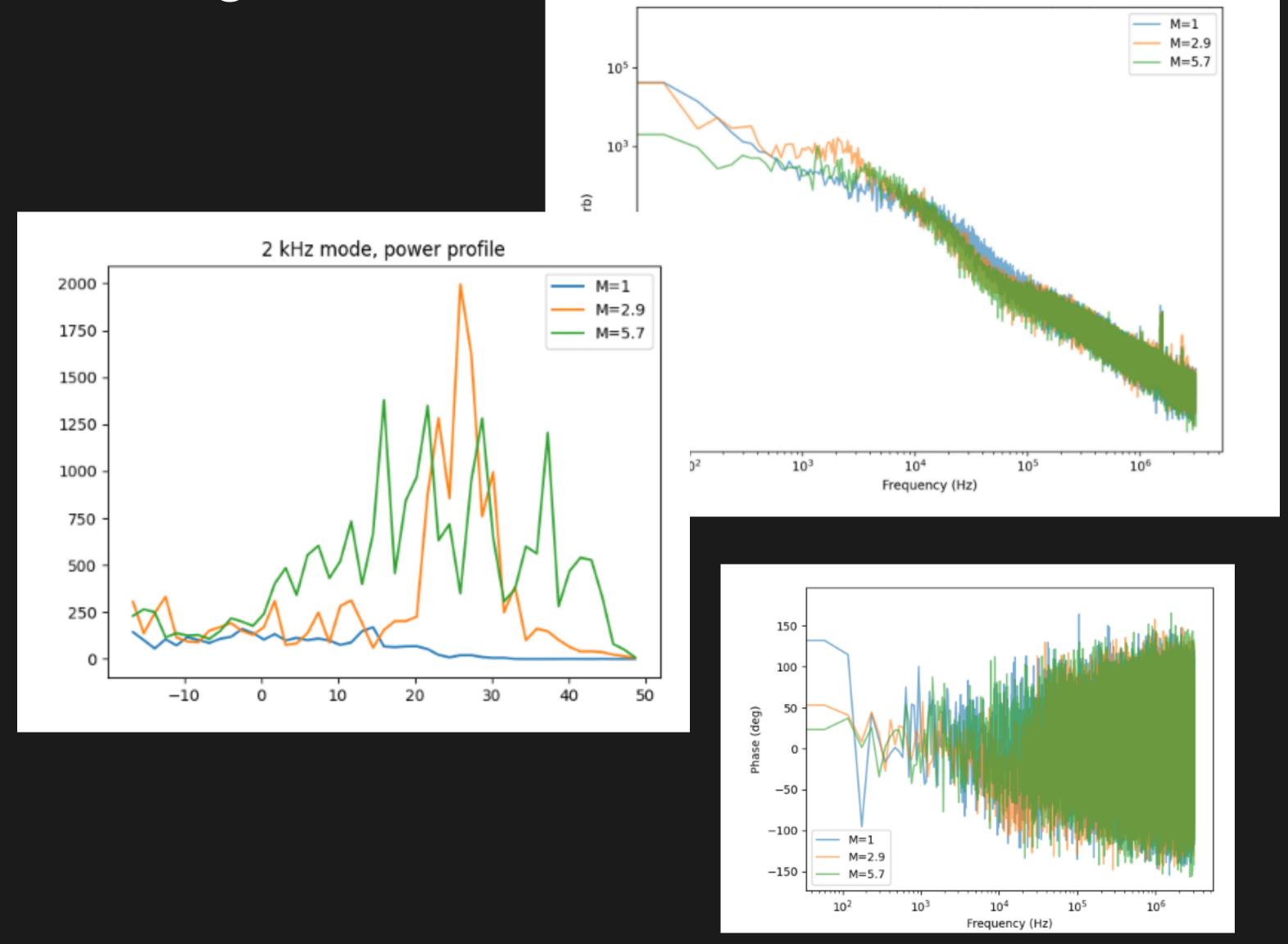
- See peak in Langmuir probe fluctuation spectra at ~2 kHz
- Temperatures get very high (> 20 eV) with short gas puff timings
  - Largely collisionless on the length scale of the mirror cell this all points to interchange



# Mirror-turb: evidence for interchange

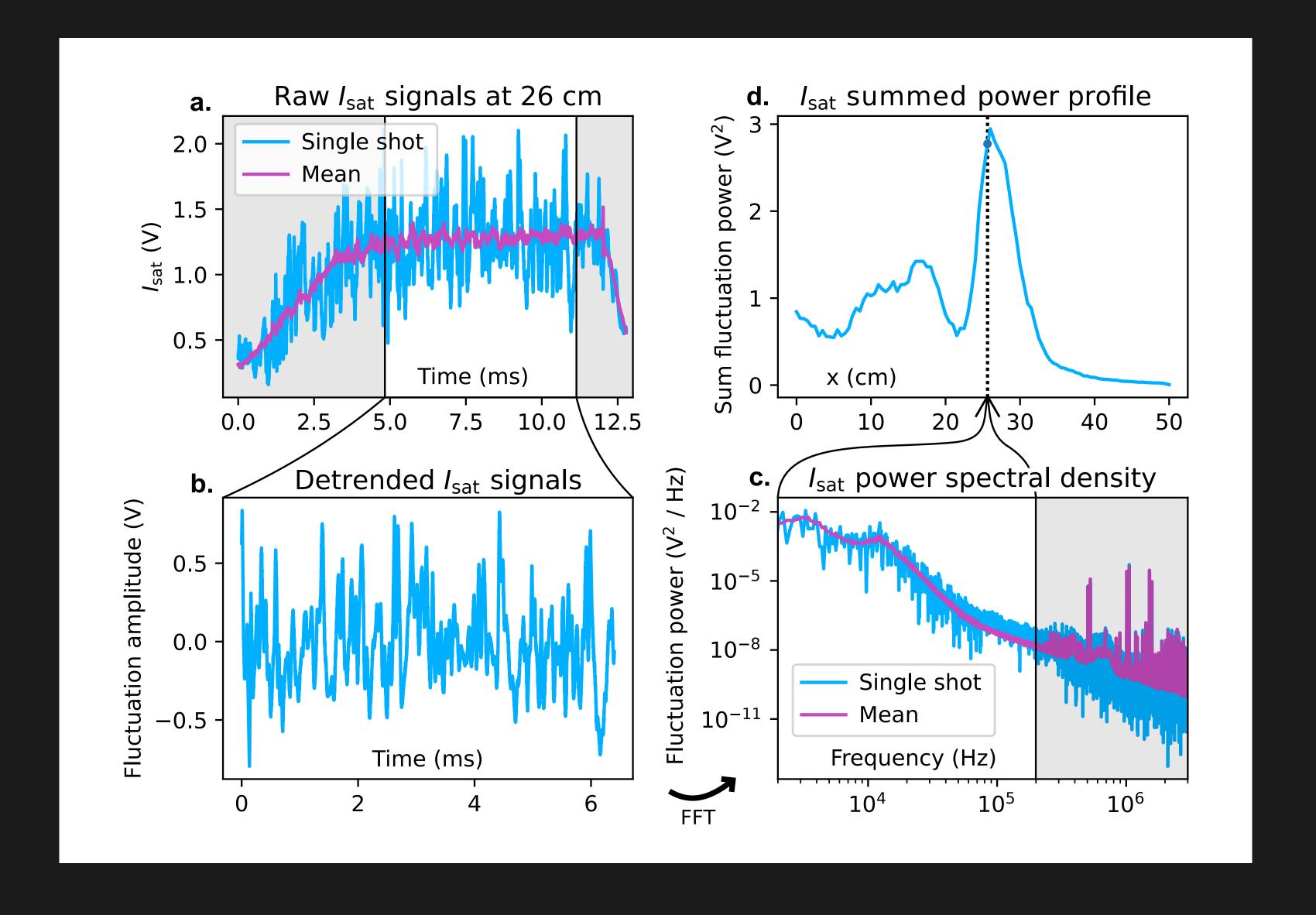






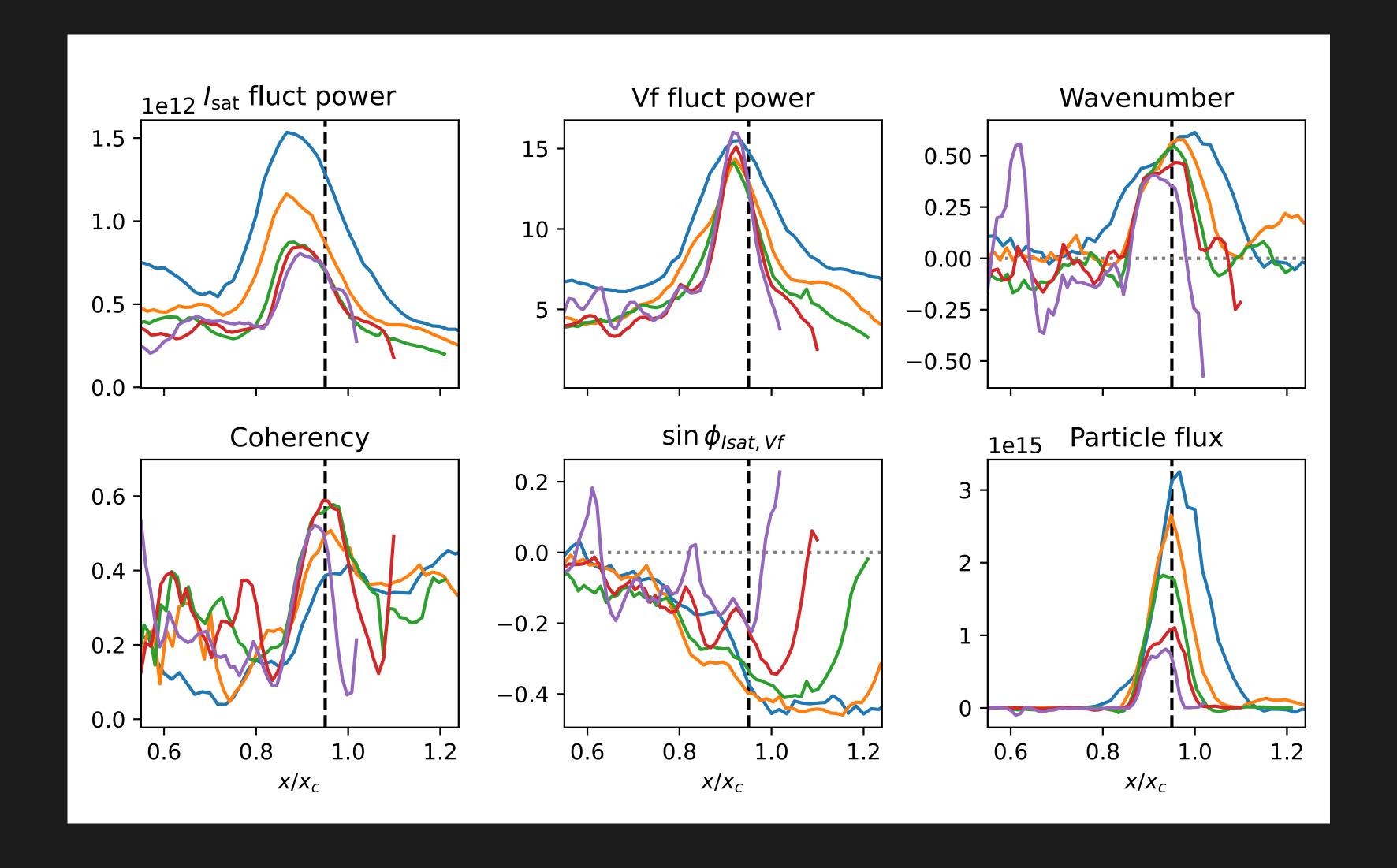


## Mirror-turb: data processing





# Mirror-turb: particle flux breakdown





## ML: data breakdown

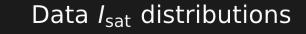
Table 4.1: Data breakdown by class and dataset (percent)

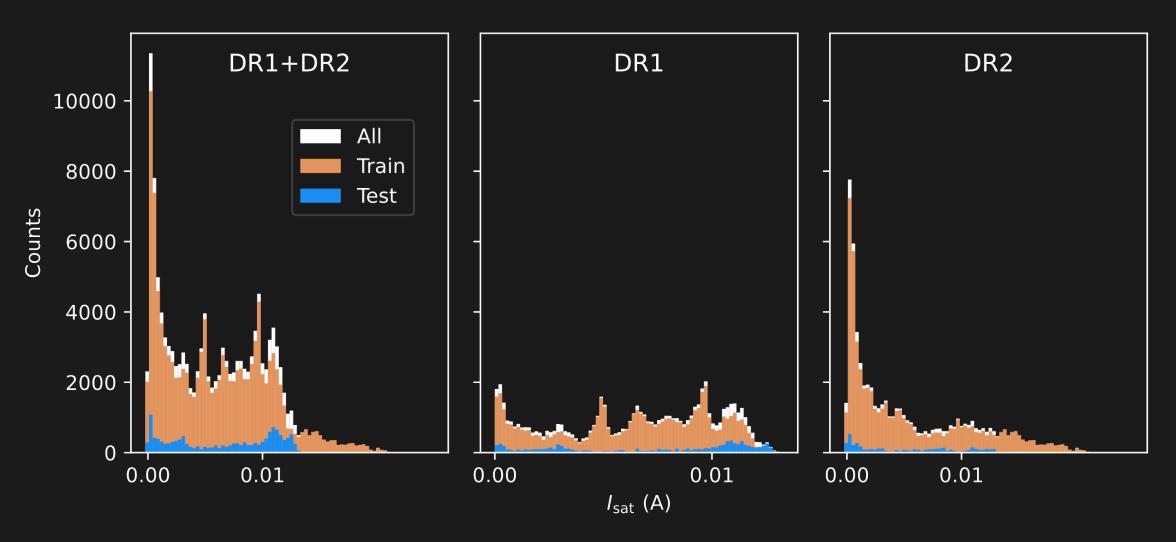
| B source (G)           |       |       | B mirror (G)          |                              |       |       | B midplane (G)            |      |       |       |       |
|------------------------|-------|-------|-----------------------|------------------------------|-------|-------|---------------------------|------|-------|-------|-------|
|                        | Train | Test  | All                   |                              | Train | Test  | All                       |      | Train | Test  | All   |
| 500                    | 4.77  | 0     | 4.29                  | 250                          | 4.30  | 8.41  | 4.72                      | 250  | 8.25  | 21.01 | 9.55  |
| 750                    | 3.34  | 12.61 | 4.29                  | 500                          | 30.49 | 8.41  | 28.23                     | 500  | 43.80 | 8.41  | 40.19 |
| 1000                   | 43.13 | 78.99 | 46.78                 | 750                          | 6.68  | 16.81 | 7.72                      | 750  | 6.62  | 52.19 | 11.27 |
| 1250                   | 12.59 | 0     | 11.30                 | 1000                         | 28.85 | 57.97 | 31.82                     | 1000 | 26.36 | 5.78  | 24.26 |
| 1500                   | 19.23 | 0     | 17.27                 | 1250                         | 3.34  | 4.20  | 3.43                      | 1250 | 9.24  | 0     | 8.30  |
| 1750                   | 1.91  | 0     | 1.71                  | 1500                         | 26.34 | 4.20  | 24.08                     | 1500 | 5.73  | 12.61 | 6.43  |
| 2000                   | 15.03 | 8.41  | 14.35                 |                              |       |       |                           |      |       |       |       |
|                        |       |       |                       | 1                            |       |       |                           | 1    |       |       |       |
| Gas puff voltage (V)   |       |       | Discharge voltage (V) |                              |       |       | Axial probe position (cm) |      |       |       |       |
| 70                     | 12.11 | 16.81 | 12.59                 | 70                           | 12.22 | 8.41  | 11.83                     | 639  | 12.48 | 8.41  | 12.06 |
| 75                     | 6.68  | 0     | 6.00                  | 80                           | 5.25  | 0     | 4.72                      | 828  | 17.07 | 36.28 | 19.03 |
| 80                     | 11.46 | 8.41  | 11.15                 | 90                           | 2.86  | 8.41  | 3.43                      | 859  | 12.48 | 8.41  | 12.06 |
| 82                     | 41.49 | 57.97 | 43.17                 | 100                          | 3.34  | 8.41  | 3.86                      | 895  | 33.01 | 30.10 | 32.71 |
| 85                     | 14.13 | 0     | 12.69                 | 110                          | 8.77  | 0     | 7.87                      | 1017 | 12.48 | 8.41  | 12.06 |
| 90                     | 14.13 | 16.81 | 14.40                 | 112                          | 20.62 | 0     | 18.52                     | 1145 | 12.48 | 8.41  | 12.06 |
|                        |       |       |                       | 120                          | 3.82  | 8.41  | 4.29                      |      |       |       |       |
|                        |       |       |                       | 130                          | 0.95  | 0     | 0.86                      |      |       |       |       |
|                        |       |       |                       | 140                          | 2.86  | 8.41  | 3.43                      |      |       |       |       |
|                        |       |       |                       | 150                          | 39.30 | 57.97 | 41.20                     |      |       |       |       |
|                        |       |       |                       | l                            |       |       |                           | l    |       |       |       |
| Gas puff duration (ms) |       |       |                       | Vertical probe position (cm) |       |       |                           |      |       |       |       |
| 38                     | 94.27 | 91.59 | 94.00                 | ≈ 0                          | 36.26 | 46.08 | 37.26                     |      |       |       |       |
| < 38                   | 5.73  | 8.41  | 6.00                  | ≠ 0                          | 63.74 | 53.92 | 62.74                     |      |       |       |       |
|                        |       |       |                       | ,                            |       |       |                           | l    |       |       |       |
|                        |       |       |                       |                              |       |       |                           |      |       |       |       |



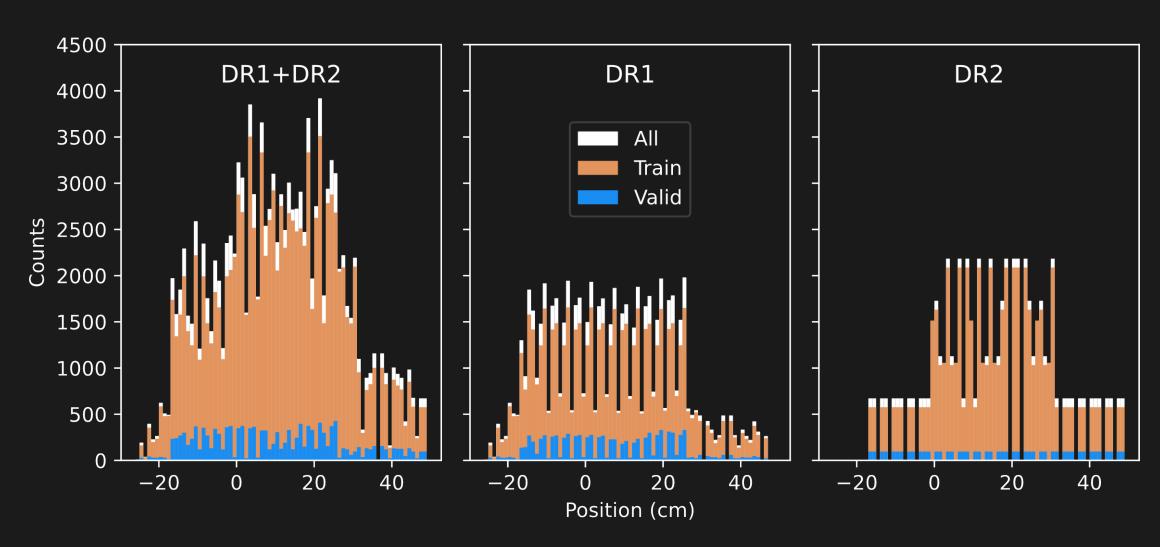
#### ML: data info

- Collected across two run weeks about a year apart, DR1 and DR2
- 131k shots collected over
   67 dataruns
- DR1 had much higher neutral pressures than DR2
- Model will perform better where there's more data



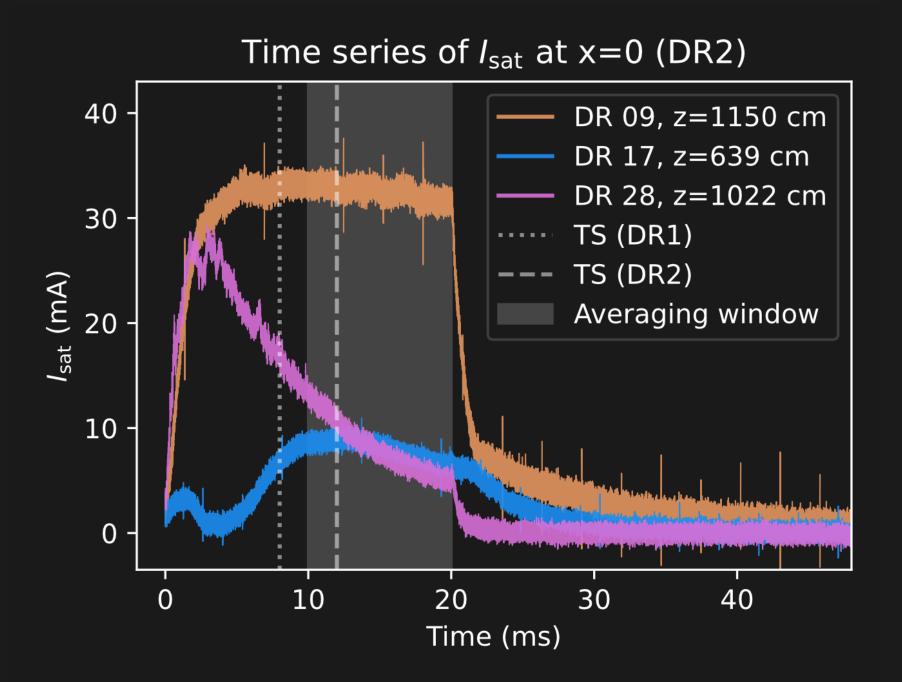


Data x-coordinate distributions, 1 cm bins



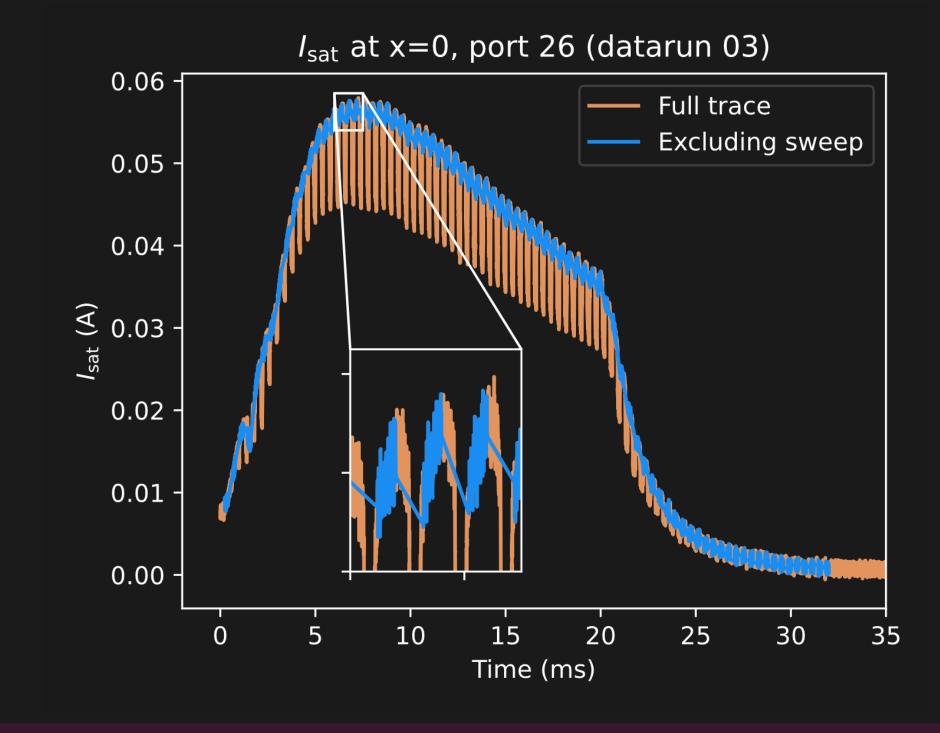


# ML: isat averaging



- Averaged from 10 to 20 ms after 1 kA trigger
  - Minimize complexity of the project starting out

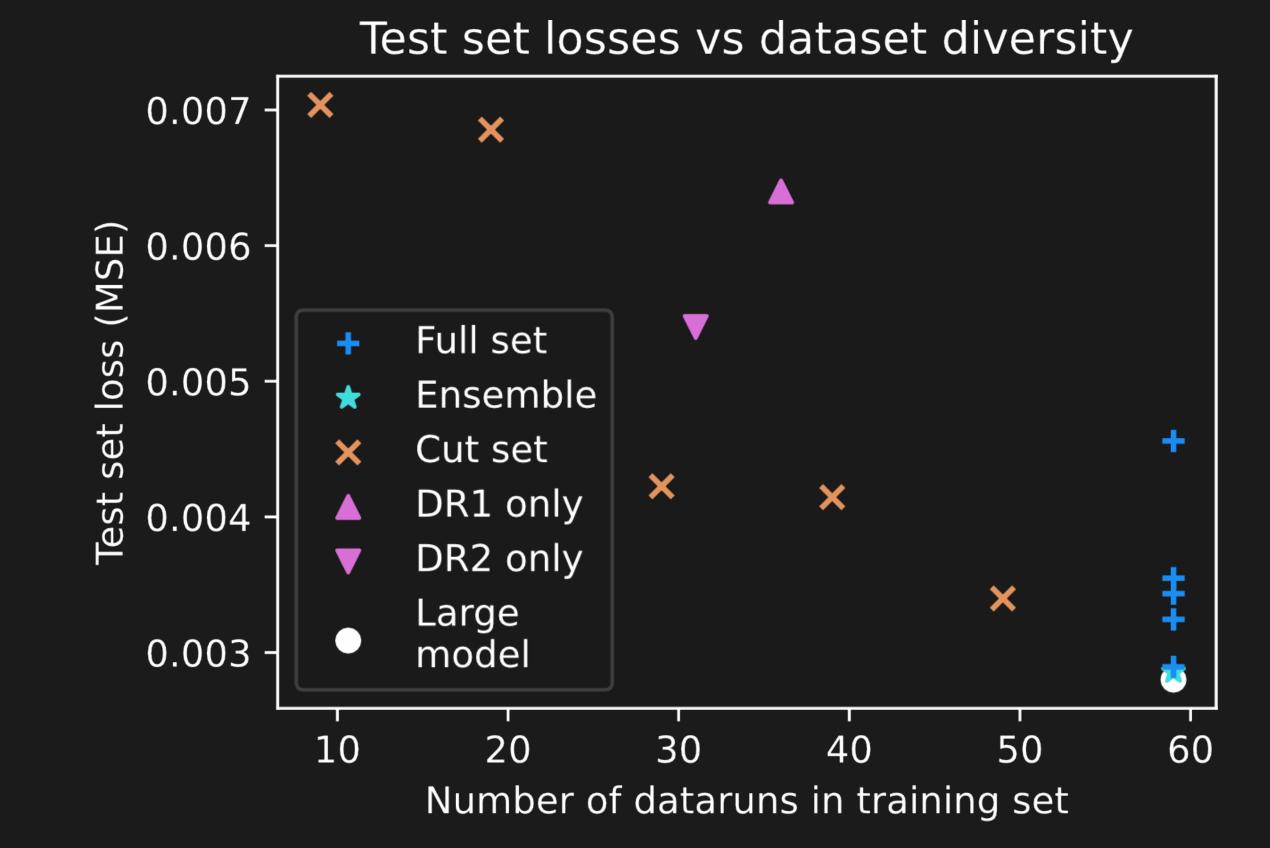
- Cleaning data is always required
  - Cut out shots that saturated the isolator or digitizer
  - Selective averaging for one of the probes





# Test performance improves with more data

- Using the MSE loss function:  $\mathscr{L}_{MSE} = \frac{1}{m} \sum_{i=1}^{m} \left( f(x_i) y_i \right)^2$
- 4 layers, 512 units wide
- Test set performance is improved by:
  - more dataruns in training set
  - combining both sets of dataruns
  - ensembles of models
  - larger models

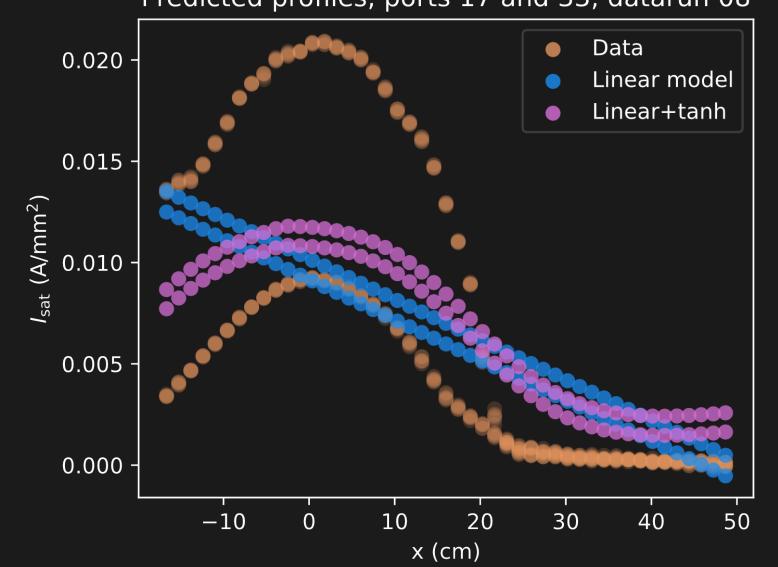


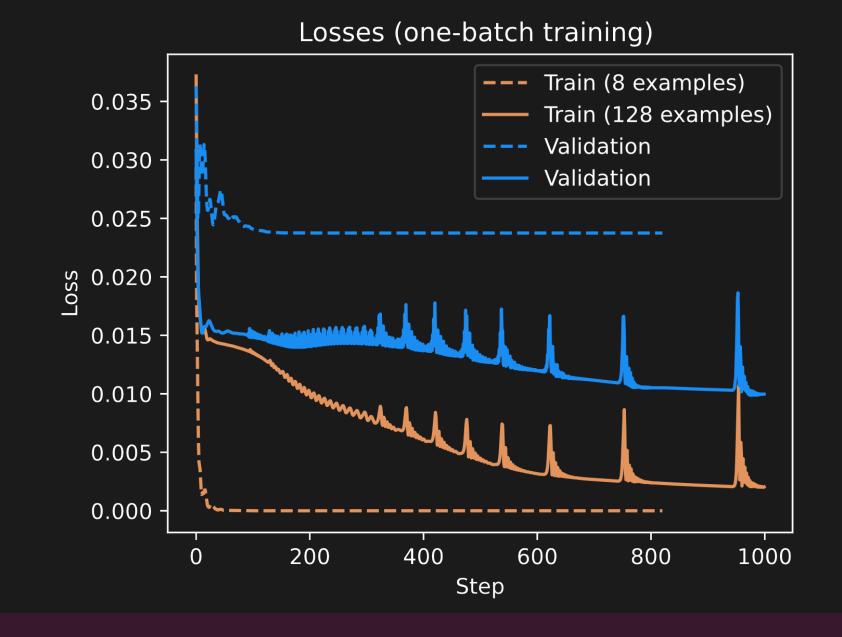


ML: Benchmarking and pipeline validation are important Predicted profiles, ports 17 and 33, datarun 08

- ML bugs are very insidious: nothing crashes, model performance is degraded, hard to notice
- Look for expected behavior
  - Train with zeroes for inputs
  - Train a linear model
  - Try feature engineering on the linear model (+tanh)
  - Overfit the model
- It's learning as expected

| Test        | MSE   |
|-------------|-------|
| Zero-input  | 0.036 |
| Linear only | 0.014 |
| Linear+tanh | 0.011 |

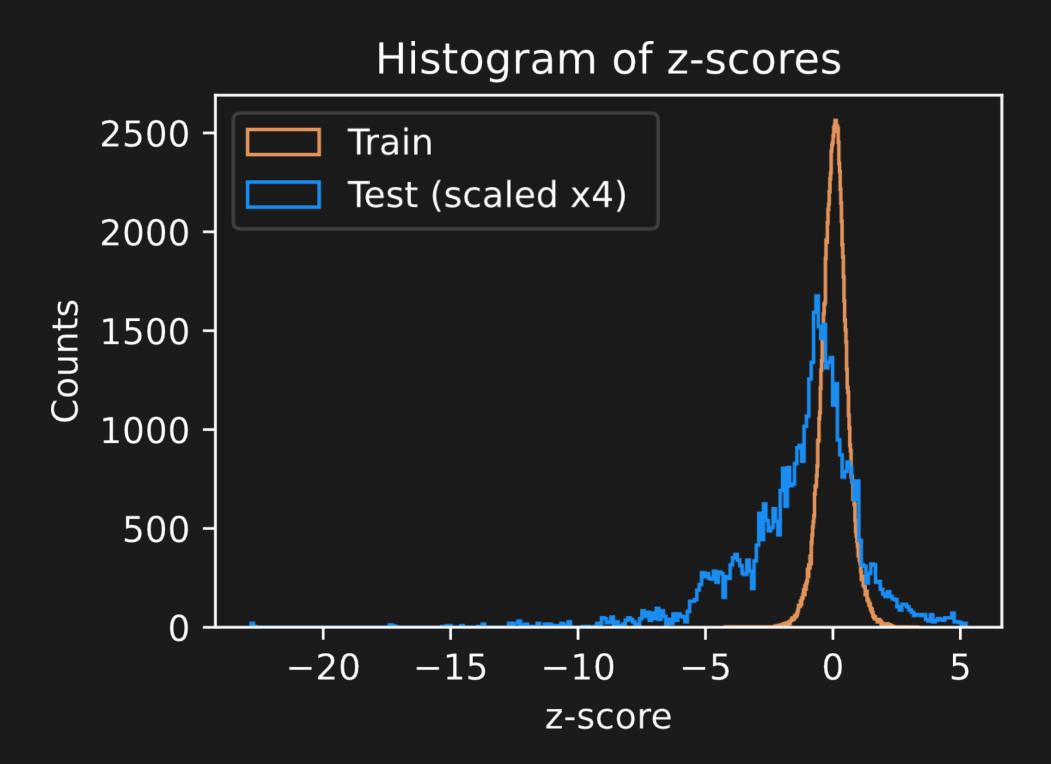


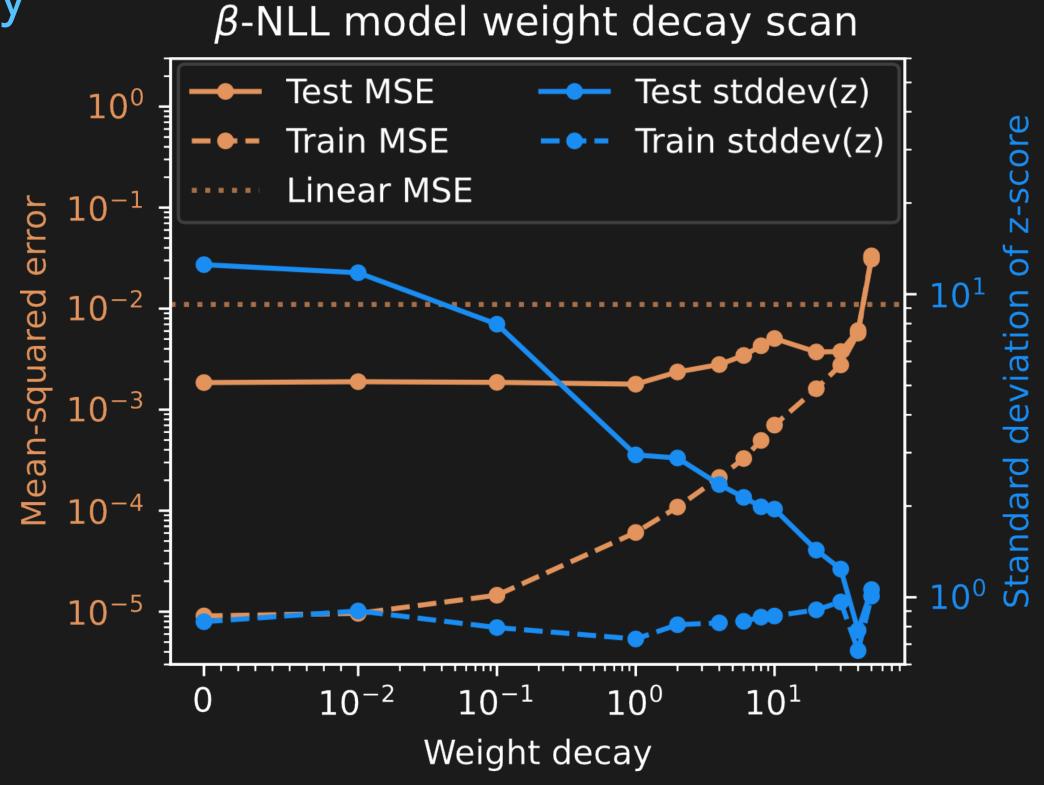




#### ML: z-score calibration

- z-score: squared error scaled by standard deviation
- Test set z-scores are broader than the training set
- Attempt to calibrate model through weight decay







## ML: nitty-gritty training details

- Leaky ReLU activations
- AdamW optimizer
- 4 layers, 256 width (occasionally 512 or 1024)
- No weight decay
- Gradient clipping (percentile and absolute)
- No other regularization
- Models take ~30 min to train for 500 epochs (no early stopping)
- All in PyTorch



# ML: optimization / search parameters

Table 5.2: Machine inputs and actuators for model inference

| Input or actuator | Range             | Step    | Count |  |
|-------------------|-------------------|---------|-------|--|
| Source field      | 500 G to 2000 G   | 250 G   | 7     |  |
| Mirror field      | 250 G to 1500 G   | 250 G   | 6     |  |
| Midplane field    | 250 G to 1500 G   | 250 G   | 6     |  |
| Gas puff voltage  | 70 V to 90 V      | 5 V     | 5     |  |
| Discharge voltage | 70 V to 150 V     | 10 V    | 9     |  |
| Gas puff duration | 5 ms to 38 ms     | 8.25 ms | 5     |  |
| Probe x positions | -50 cm to 50 cm   | 2 cm    | 51    |  |
| Probe y positions | 0 cm              | _       | _     |  |
| Probe z positions | 640 cm to 1140 cm | 50 cm   | 11    |  |
| Probe angle       | 0 rad             | _       | _     |  |
| Run set flag      | off and on        | 1       | 2     |  |
| Top gas puff flag | off and on        | 1       | 2     |  |
|                   |                   |         |       |  |

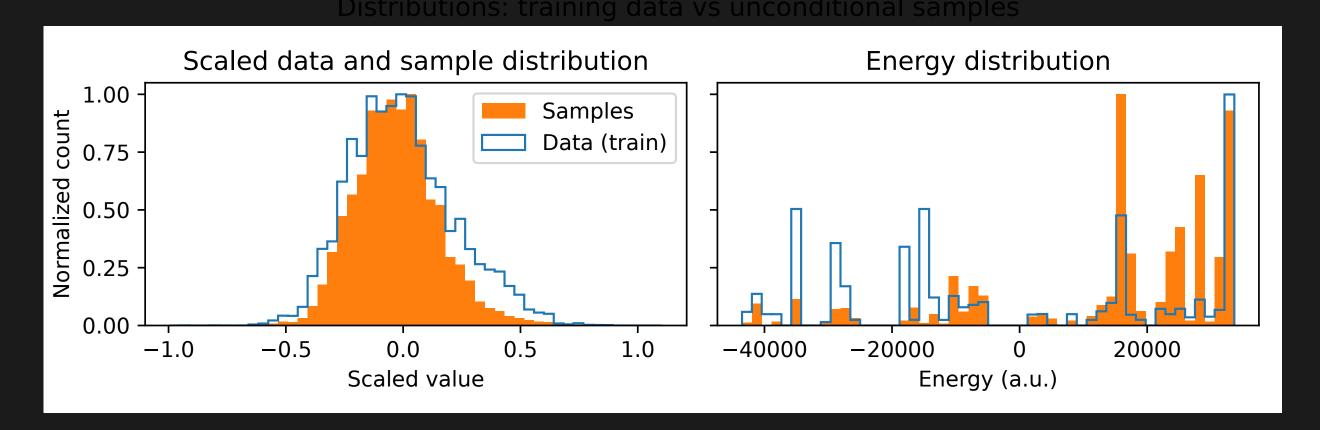
Table 5.3: Machine inputs and actuators for optimized axial profiles

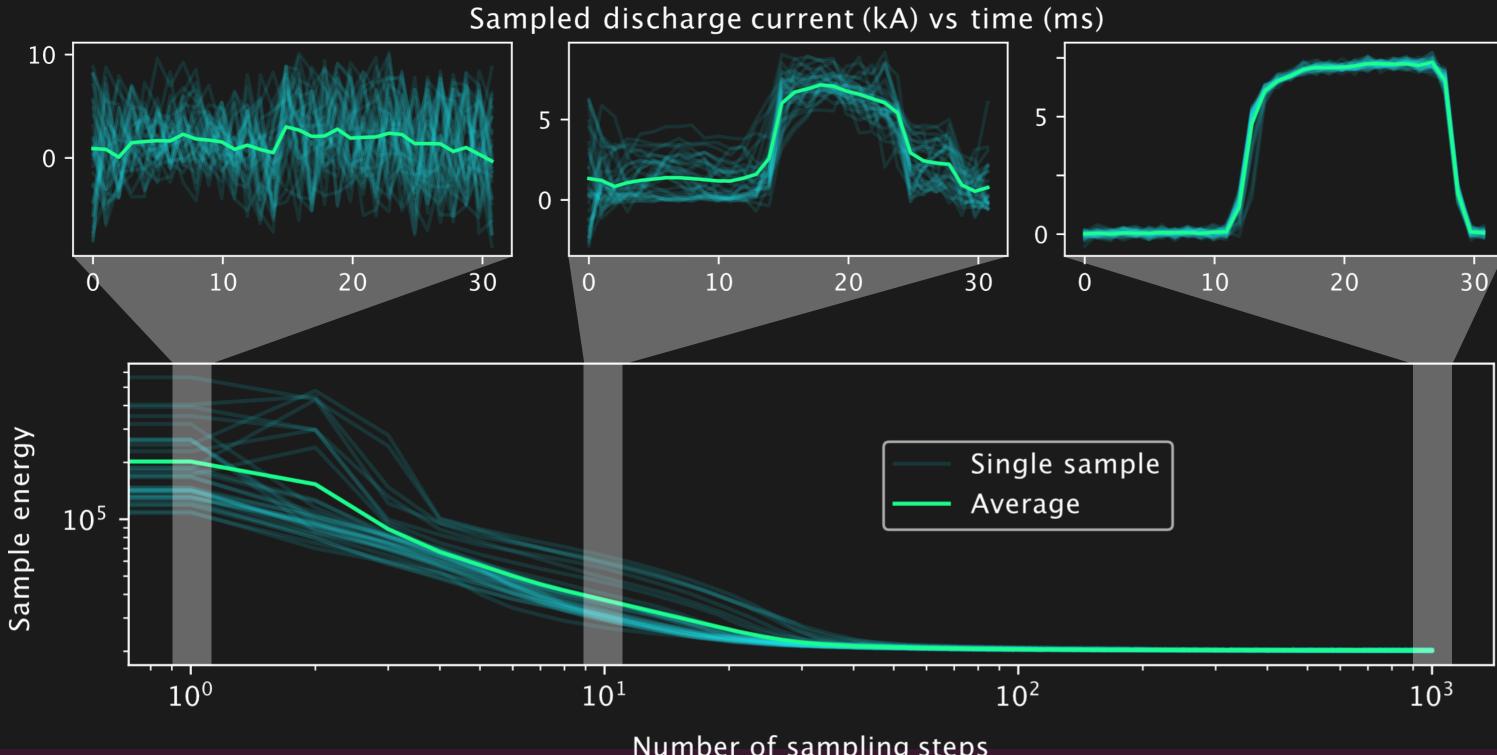
| Input or actuator                                 | Weakest                   | Weakest             | Strongest           | Intermediate        |
|---------------------------------------------------|---------------------------|---------------------|---------------------|---------------------|
| I <sub>sat</sub> constraint (mA/mm <sup>2</sup> ) | $I_{\rm sat} = {\rm any}$ | $I_{\rm sat} > 7.5$ | $I_{\rm sat} > 7.5$ | $I_{\rm sat} > 7.5$ |
| Source field                                      | 750 G                     | 1000 G              | 500 G               | 2000 G              |
| Mirror field                                      | 1000 G                    | 750 G               | 500 G               | 1250 G              |
| Midplane field                                    | 250 G                     | 250 G               | 1500 G              | 750 G               |
| Gas puff voltage                                  | 70 V                      | 75 V                | 90 V                | 90 V                |
| Discharge voltage                                 | 130 V                     | 150 V               | 150 V               | 120 V               |
| Gas puff duration                                 | 5 ms                      | 5 ms                | 38 ms               | 38 ms               |
| Run set flag                                      | on                        | on                  | on                  | on                  |
| Top gas puff flag                                 | on                        | off                 | off                 | off                 |
|                                                   |                           |                     |                     |                     |



# EBM: the model captures all modes of the probability distribution

- Model captures all modes of the distribution
  - GANs, VAEs can struggle







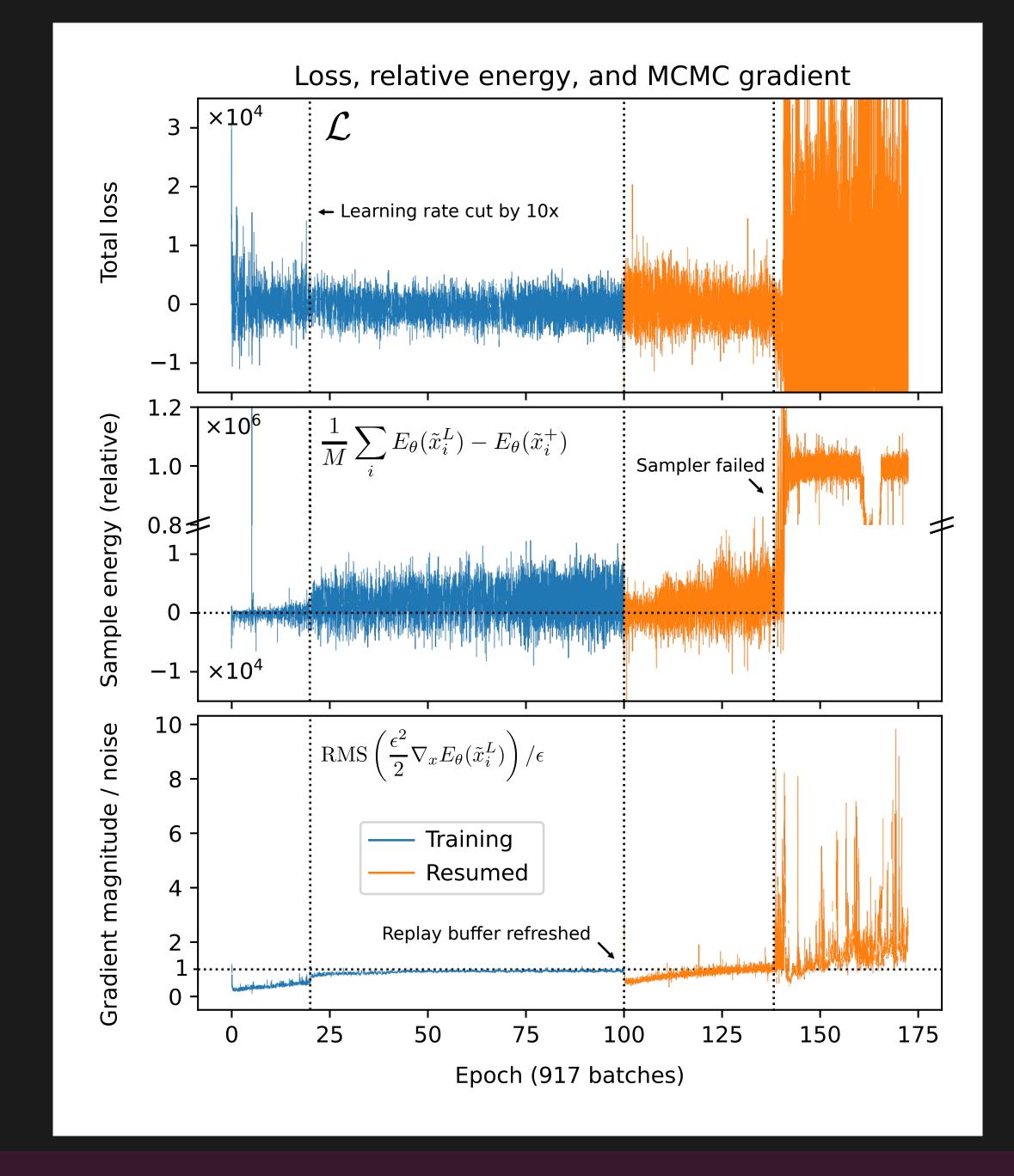
#### EBM: losses

$$\mathscr{L} = \mathscr{L}_{CD} + \mathscr{L}_{KL} + \alpha \mathscr{L}_{reg}$$

$$\mathscr{L}_{\mathrm{CD}} = \frac{1}{M} \sum_{i} E_{\theta}(\tilde{x}_{i}^{+}) - E_{\theta}(\tilde{x}_{i}^{L})$$

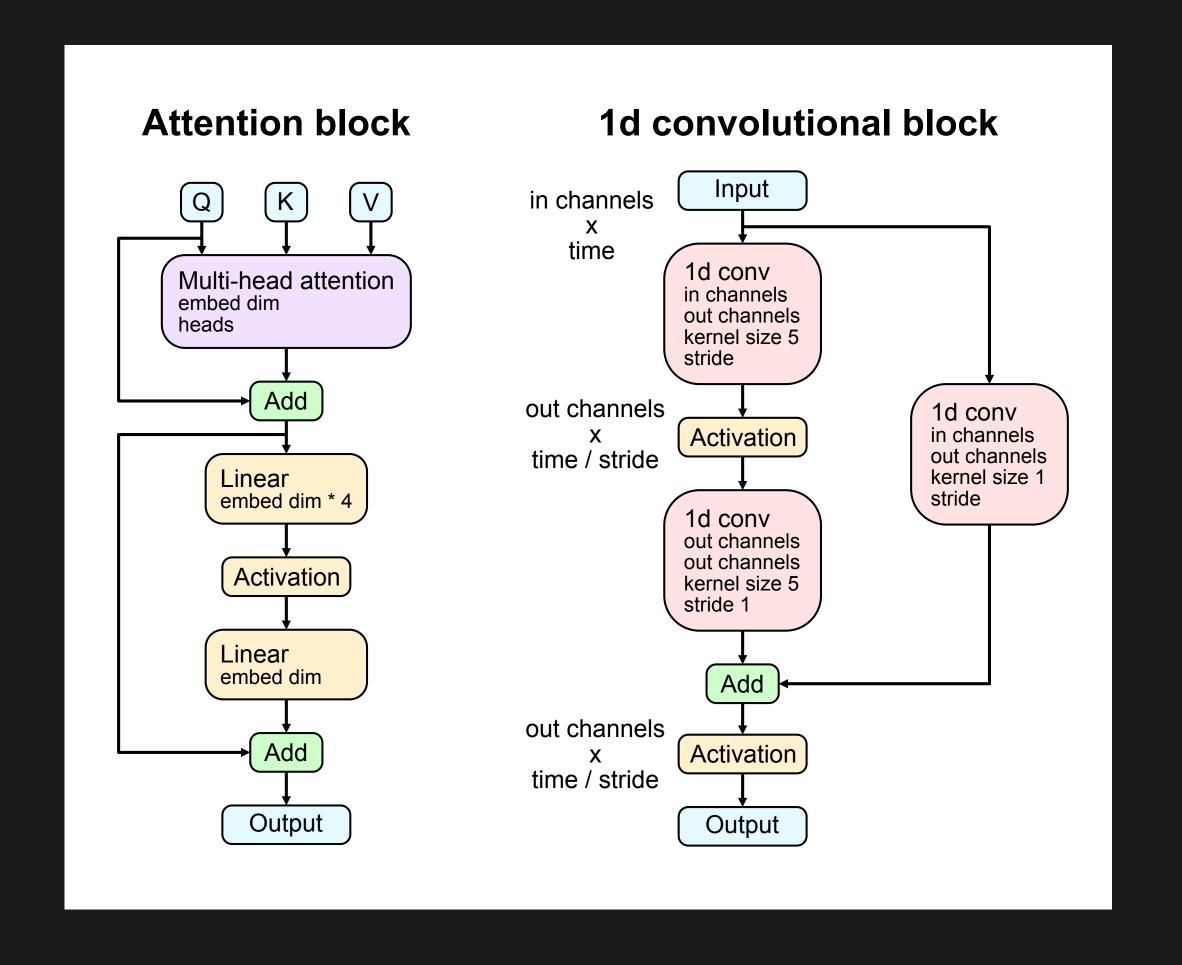
$$\mathscr{L}_{\mathrm{KL}} = \frac{1}{M} \sum_{i} E_{\Omega(\theta)} (E_{\theta}(\hat{x}_{i}^{K}) - \mathrm{NN}(X, \hat{x}_{i}^{K}))$$

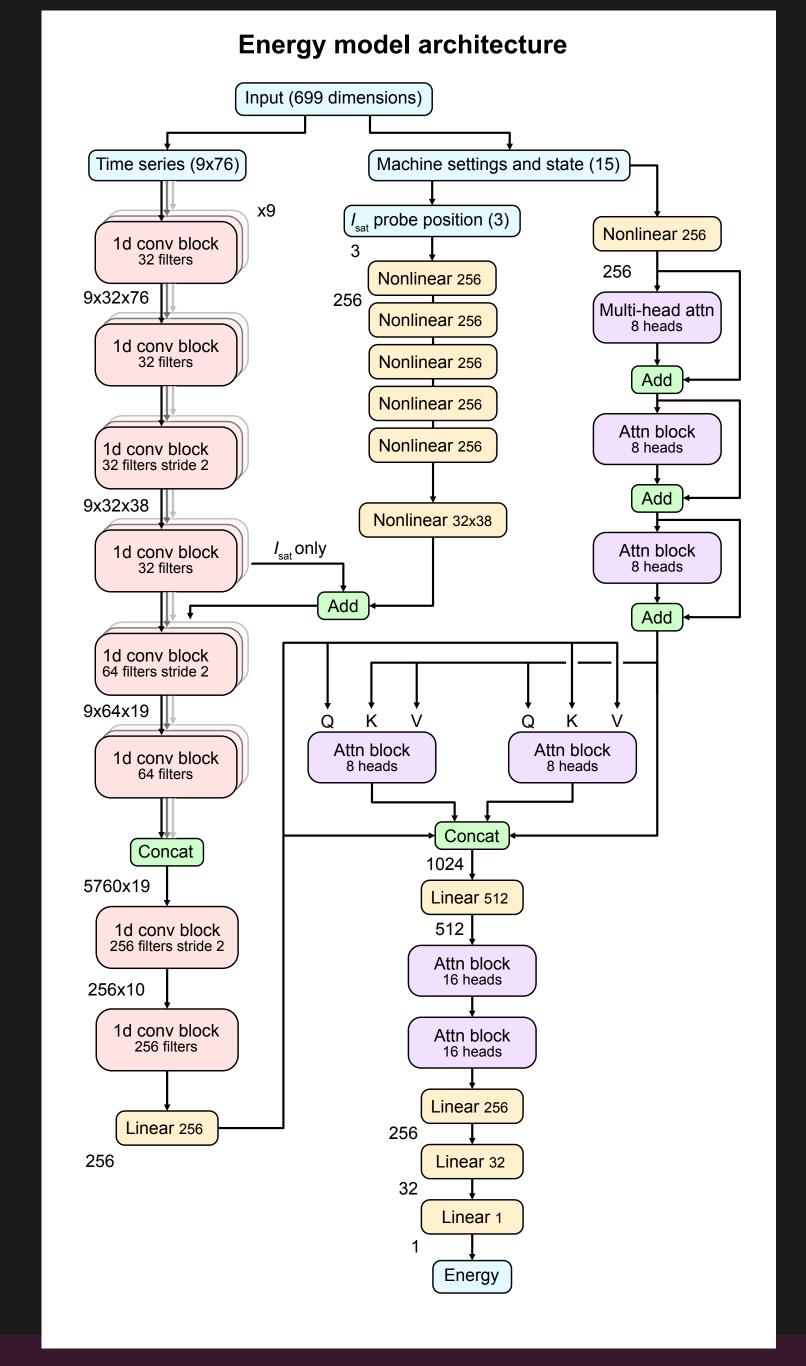
$$\mathscr{L}_{\text{reg}} = \frac{1}{M} \sum_{i} E_{\theta} (\tilde{x}_{i}^{+})^{2} + E_{\theta} (\tilde{x}_{i}^{L})^{2}$$





#### EBM: architecture

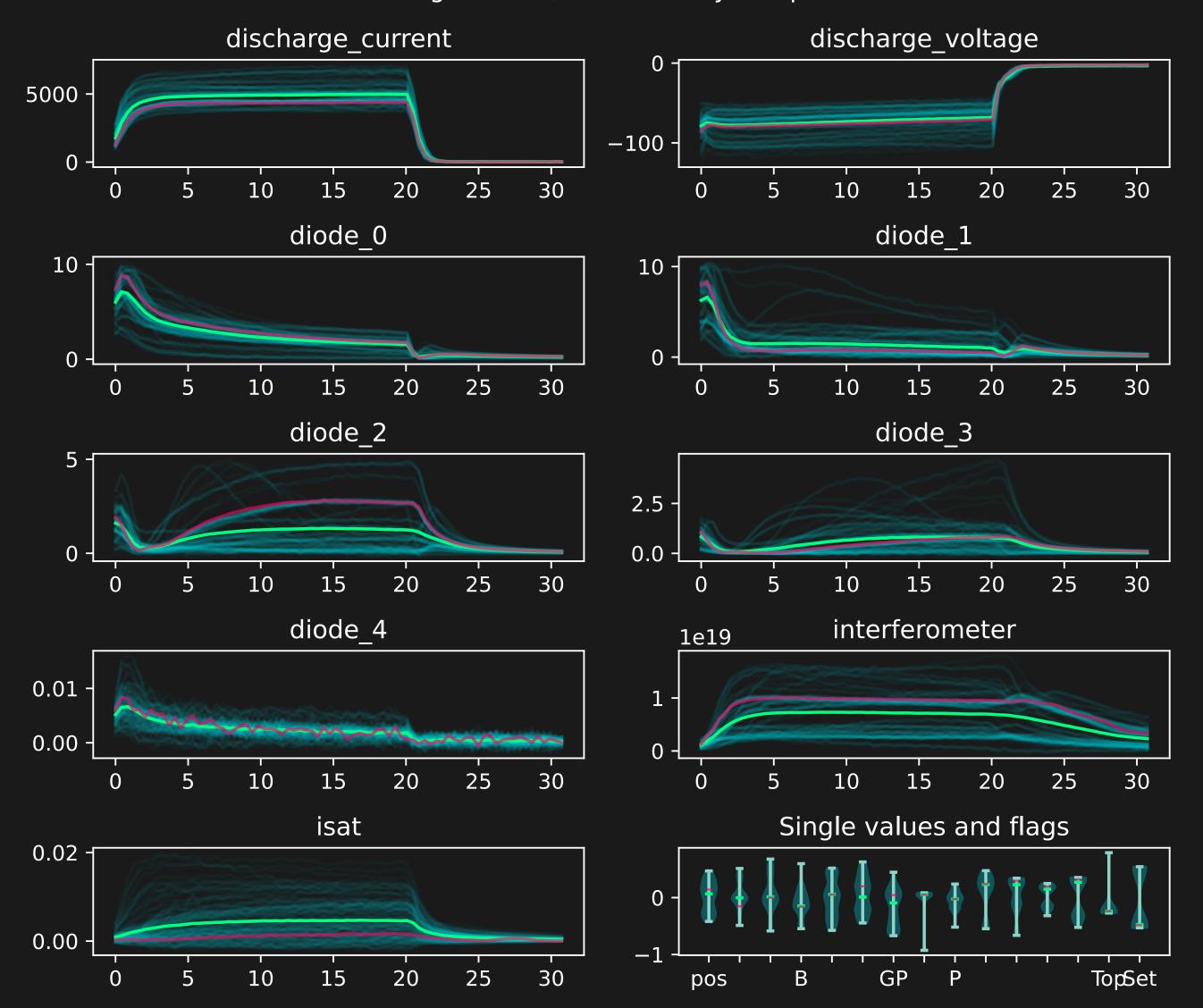






# EBM: unconditional samples

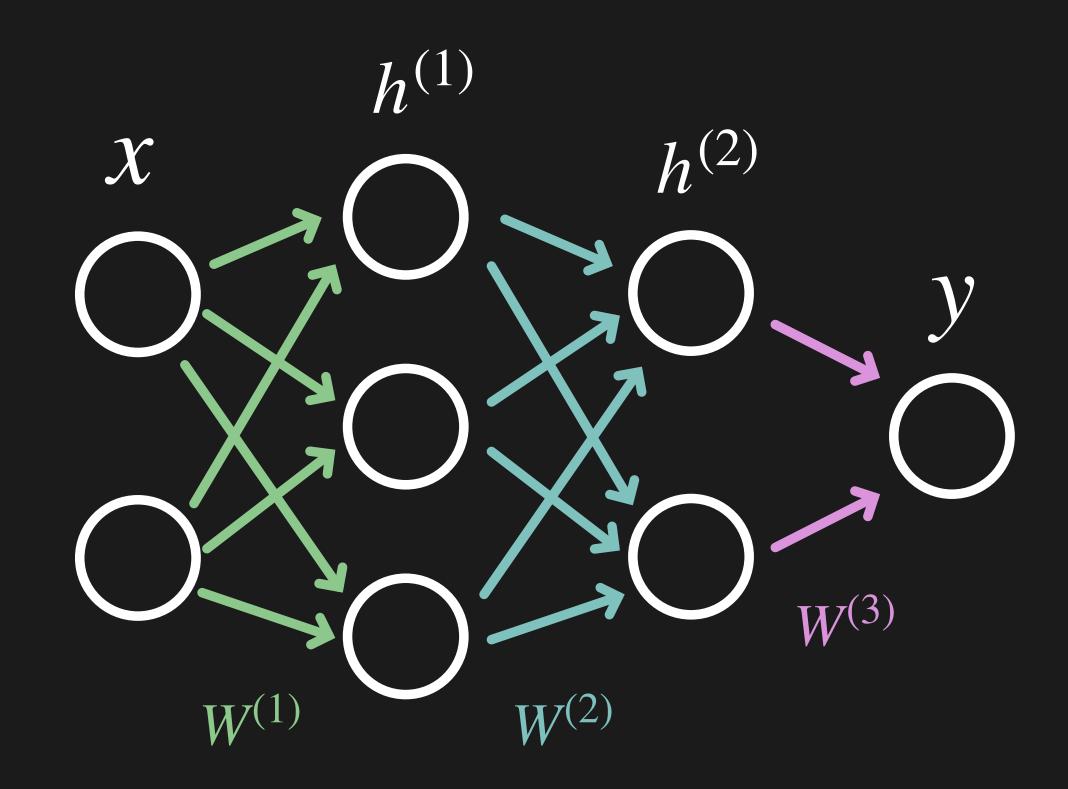
Real discharges = red, conditionally sampled = blue







## NNs are repeated matrix multiplication and a nonlinearity



Neural network "layer"

Input *x*: our machine configuration and probe location

Output y: time-averaged Isat value

and that is how you make sand think



# NNs are trained via gradient descent over some loss function

Update values based on gradient (I use AdamW)

• 
$$\vec{x} := \vec{x} - \nabla_{\vec{x}} \mathcal{C} \cdot \lambda$$
cost function step size

$$\mathscr{L}_{MSE} = \frac{1}{m} \sum_{i=1}^{m} \left( f(x_i) - y_i \right)^2$$

$$\mathcal{L}_{\beta-\text{NLL}} = \frac{1}{2} \left[ \log \sigma_i^2(\mathbf{x}_n) + \frac{\left(\mu_i(\mathbf{x}_n) - y_n\right)^2}{\sigma_i^2(\mathbf{x}_n)} \right] \text{StopGrad} \left(\sigma_i^{2\beta}\right)$$

