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Building a generative LAPD transport model
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LAPD Generative Transport
* 20 mlong, 1m wide e Learns distribution p($) * Heat and particle loss
* Te~5+¢eV . Can sample s ~ p(S) * Cross-field
e Shots ~ 16 ms long . Can generate data  Primary concern in MCF

* Reprate: 1 Hz



ATC Outline: building a generative LAPD transport model

 Why ML matters
e Case studies: machine learning is important for the future of fusion science
* Accelerating science with ML and energy based models
 What I’'m doing
| APD project: comprehensive transport characterization
e Side projects: optimizing plasma quality, autonomous search
* Looking forward: long-term potential is huge

e Quick demo
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ML provides a new prediction paradigm

Theory

fm (V)

Landau damping (Chen)

Provides insight
Wide scale range

Very hard

Empirical approach
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H-mode threshold scaling (Martin et al. 2008)
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Simple

High bias
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Machine learning
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Sampling LAPD profiles via an EBM

e Low bias*
e | earns structure

e (Opaque
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Learned models are useful for correcting our models

1.6 | . | | | |

« OMEGA laser pulse and target

optimization o
V. Gopalaswamy et al. 2019 1.2 +t : + e =
o Statistically mapped simulations to ® ¢

experiments for given inputs

Measured yield (x104)
o
Qo

® Mapping model (training data)
O Mapping model (validation data) |
® Simulation (training data)

O Simulation (validation data)

| I I
3 4 S

 Model-based methods enable planning Predicted yield (x10™)

Reinforcement Learning, Sutton

O
I

* Jripled fusion yield by varying target
parameters and pulse shape

V. Gopalaswamy et al. 2019
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Learned models can compensate for lack of understanding

 Example: super H-mode prediction

(Snyder et al. 2015)

e Strongly-shaped confinement improvement

 May have been observed years before
prediction

(Matthias Knolker, private communication)

e Counterfactual: what else has been observed
that we cannot use?

ML models enable use of information
without theoretical prediction
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Learned models may alleviate human shortcomings

* Evidence of bias in NIF experiment planning

 Assumption relaxation —> largest yield
INncreases

* | ack of disconfirming experiments
* Theory introduces bias
* |s there bias in our MCF experiment designs?

e A learned model has no preconceived notions™
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Long-term goal: automate fusion science

D "N

Conduct
nE

experiment
Learn from

experiment

- &/

r=

Propose
experiment

* | earning structures permits
automated exploration

* encourages rapid device iteration
 memorization is not sufficient

e Something needs to understand
fusion reactors

e It need not be humans

My goal: set us on this path



Energy based models (EBMs) learn the distribution of the data

LeCun 2006

s )
p(X) ~ e_ﬁ E(x) <- generative ML model ata

* | earns an energy surface

o Sample from this energy surface

x; ~ p(X | Side = L)

* Learn how everything is related
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EBM: training and sampling

Energy
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The LAPD i1s an ideal testbed for EBMs + fusion

LCFS

* High rep rate, flexible, accessible

(Gekelman et al. 2016)

Poloidal

* 31 million experiments per year

Radial

* |s capable of performing fusion relevant
studies (mostly edge)

fo+6us Scm

e Sheared flow turbulence suppression

(Schaffner 2013)

D

6cm

° Interm Ittent fl Iamentary Stru Ctures “Blobs” in DIII-D (Boedo 2009) “Blobs” in LAPD (Carter 2006)
(Boedo 2009, Carter 2006)

e Drift wave turbulence

(Tynan et al. 2009)
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Projects: a comprehensive LAPD transport study

* Project O: auxiliary diagnostics system augmentation
* Project 1: profile reconstruction

* Project 2: theory incorporation

* Project 3: wide-range characterization

e Side projects

 Why: simplest problem that can demonstrate generative model efficacy
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Project 0: augmenting an auxiliary diagnostics pipeline

» Limitations restraining ML methods:

 Lack of machine state information (MSI)

* Diagnostics are highly localized (probes)

» Goal: build auxiliary data acquisition system

Fast camera
Diamagnetic loop
Spectrometers

May try algorithmic control

fluctuation amplitude [a.u.]
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time [ms]

isat-GPI time series (Grulke et al. 2014)
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Project 1: can we reconstruct profiles with EBMs?

| | Cffff B

 Combine MSI + global diagnostics .
(project 0) + probes .
B |

 Gather data with various: fill
pressures, discharge currents, field - °

strengths

| 4

e Goals: using an EBM, nx) ~p(N|MSI) EBM

» from few probe measurements, * I
infer profile IXZ%?’?

Relax azimuthal symmetry

 from a profile, infer machine state ‘ &3 02
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LAPD fast camera

assumption?
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Project 2: can we deduce transport by incorporating theory?

on 0 In(T,)
Fer=—DF— —DTi’l
’ or or
* |ncorporate LAPD transport model T 4
(Maggs et al. 2007) *
R_adial Bylk fl_ow T_hern_1a|
° InCIUdeS radlal dynam|CS particle flux diffusion diffusion
I T —Tr———Tr7TTr7T———T7T T T T T
* Probably use a surrogate model ————D=p @

N
O

N

e (Fo0als:

e predict diffusion coefficients

Normallized Amplitude
.

O
o

e could predict temperature profiles

-

Radial position (cm)

e evaluate model via experiments

Maggs et al. 2007
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Project 3: can we characterize LAPD transport over a wide range?

 Expand applicability of model over the wide range of parameters

» Also vary: edge bias, field profiles

* Possibly vary: antenna waveforms, powers
e (Goals: | Limiter Plates .

e |learn and provide confinement trends

o attempt learning of non-stationary variables
(relax reproducibility assumption)

Schaffner 2013
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Timeline: ~6 months per project

Auxiliary diagnostics system MSI + camera + one other

within 20%*
Theory incorporation diffusivity within 20%*

long-term behavior within 50%* Wide range characterization

—_—m

Now Fall 2021 Spring 2022 Fall 2022 Spring 2022

 Contingency: can do simpler analysis manually (not high-dimensional)

 do human learning instead



Project review: ML can help us out with characterizing LAPD transport

 Augment auxiliary diagnostics system, build LAPD ML model, incorporate theory
 Why use ML anyways for a transport study?

e Current paradigm: isolate variables

10 actuators, 5 values for each = 10° experiments

 Some actuators / confounders cannot be isolated

ML / generative models learn correlations & structure

e Can sample from this structure
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Side project: making good quality plasmas in strong mirrors

* At high fields, plasma quality suffers 2
74
* Find regions “good” regions of HE
parameter space

Sampling Exploring

Side project: novelty search

e Sample unknown space X

E
e Vary some external actuator (antenna, biasing)
* Actively seek out bad predictions / novelty Machine parameter space

* Holy grail: prediction and detection of something unexpected / unknown
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ML will become increasingly important

 Some fields consider ML a pillar of science alongside theory, simulation, and experiment
 Autonomous characterization of fusion devices™ could radically speed up performance

* Integrate learned plasma model with natural language processing

AI-GENERATED
IMAGES

Autonomous learning

OpenAl’s DALL-E
(Ramesh 2021)

Emergent tool use from

multi-agent autocurricula
Baker et al. 2020

TexT PROMPT  an illustration of a baby daikon radish in a tutu walking a dog
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Demonstration of learned EBM on LAPD data — free sampling

10 dimensional: position, mirror ratio, 8 time series points Dataset:
/575 shots
o Samp|e from EBM: § ~ p(S) M=1,1.47,1.9, 2.3, 2.68
X=0-50cm, dx=0.5cm
0.35 1 Data
—— Data (downsampled)
0.30 - —— Sampled !
e Data: M=1.9 at 33.5 cm
£ 0.20- Sampled: M=1.7 at 33.4 cm
g 0.15 4 ]
Used IGEBM-style architecture
0.10 - (Du et al. 2020)
0.05
0 1 2 3 4 5 6 7
Time (arb)
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Conditional sampling on LAPD data s~ps|M=1)
 Model figures out correlations between M, position, and time series

Sampled vs real

M=1.0, Data
0.6 - ,  M=1.0, Sampled

ks -

0.4 - Learned the variance

DR

Isat (arb)

Tracks profile in time
D2 _

0.1 -

—-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
position (m)
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Conditional sampling on LAPD data s, ~ pls | M=m)

 Model figures out correlations between M, position, and time series

Real shots Sampled shots
M=1.0 - M=1.0
0.6 - . M=1.9 3 M=1.9
. M=2.68 . M=2.68
0.5 - 1
iy b Learned that M
= 0 controls profile
9 width and height i° - -
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Towards automating fusion science

e Plan:
augment diagnostics,
predict profiles,
iIntegrate theory,
perform expansive study

* ML Is a new
prediction paradigm

 ML-enabled methods
may help alleviate our

shortcomings
* LAPDIs a great /1 4 * Recentworkis o] it |
testbed for E [ encouraging
EBMs + fusion % o
Data

-0.1 00 01 02 03 04 05 0.6
position (m)
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Backup slides



Question: how is using an EBM better than Gaussians on data points?

* |n high dimensional spaces, gaussians will have a massive amount of
probability mass in not useful directions

 How about we have a covariance matrix for these gaussians?
e giant covariance matrix, painful / intractable to train

e —> |earn reduced representation, then place Gaussians? VAE with extra
steps
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Question: how do you sample evenly with uneven data coverage?

 EBM learns distribution of configurations
 want value at any point: use conditional sampling
* Could penalize energy gradient wrt to an input during training

 Could also add a very large bias via adding an energy function just for, say,
magnetic field configuration
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